Advertisement

Robust Detection in Leak-Prone Population Protocols

  • Dan Alistarh
  • Bartłomiej Dudek
  • Adrian Kosowski
  • David Soloveichik
  • Przemysław UznańskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)

Abstract

In contrast to electronic computation, chemical computation is noisy and susceptible to a variety of sources of error, which has prevented the construction of robust complex systems. To be effective, chemical algorithms must be designed with an appropriate error model in mind. Here we consider the model of chemical reaction networks that preserve molecular count (population protocols), and ask whether computation can be made robust to a natural model of unintended “leak” reactions. Our definition of leak is motivated by both the particular spurious behavior seen when implementing chemical reaction networks with DNA strand displacement cascades, as well as the unavoidable side reactions in any implementation due to the basic laws of chemistry. We develop a new “Robust Detection” algorithm for the problem of fast (logarithmic time) single molecule detection, and prove that it is robust to this general model of leaks. Besides potential applications in single molecule detection, the error-correction ideas developed here might enable a new class of robust-by-design chemical algorithms. Our analysis is based on a non-standard hybrid argument, combining ideas from discrete analysis of population protocols with classic Markov chain techniques.

Notes

Acknowledgments

We thank Lucas Boczkowski and Luca Cardelli for helpful comments on the manuscript.

References

  1. 1.
    Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73(12), 2962–2982 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  3. 3.
    Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  5. 5.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRefGoogle Scholar
  6. 6.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006). Preliminary version appeared in PODC 2004CrossRefzbMATHGoogle Scholar
  7. 7.
    Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, pp. 565–574, IEEE Computer Society (2000)Google Scholar
  8. 8.
    Hopfield, J.J.: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. 71(10), 4135–4139 (1974)CrossRefGoogle Scholar
  9. 9.
    Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement systems. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 133–153. Springer, Cham (2015)CrossRefGoogle Scholar
  10. 10.
    Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)CrossRefGoogle Scholar
  12. 12.
    Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Doerr, B., Doerr, C., Moran, S., Moran, S.: Simple and optimal randomized fault-tolerant rumor spreading. Distrib. Comput. 29(2), 89–104 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boczkowski, L., Korman, A., Natale, E.: Minimizing message size in stochastic communication patterns: fast self-stabilizing protocols with 3 bits. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 2540–2559Google Scholar
  15. 15.
    Dudek, B., Kosowski, A.: Spreading a confirmed rumor: A case for oscillatory dynamics, CoRR, vol. abs/1705.09798 (2017)Google Scholar
  16. 16.
    Soloveichik, D.: Robust stochastic chemical reaction networks and bounded tau-leaping. J. Comput. Biol. 16(3), 501–522 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dan Alistarh
    • 1
    • 5
  • Bartłomiej Dudek
    • 2
  • Adrian Kosowski
    • 3
  • David Soloveichik
    • 4
  • Przemysław Uznański
    • 1
    Email author
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.University of WrocławWrocławPoland
  3. 3.Inria Paris and IRIFUniversité Paris DiderotParisFrance
  4. 4.University of TexasAustinUSA
  5. 5.IST AustriaKlosterneuburgAustria

Personalised recommendations