Advertisement

Automated, Constraint-Based Analysis of Tethered DNA Nanostructures

  • Matthew R. LakinEmail author
  • Andrew Phillips
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10467)

Abstract

Implementing DNA computing circuits using components tethered to a surface offers several advantages over using components that freely diffuse in bulk solution. However, automated computational modeling of tethered circuits is far more challenging than for solution-phase circuits, because molecular geometry must be taken into account when deciding whether two tethered species may interact. Here, we tackle this issue by translating a tethered molecular circuit into a constraint problem that encodes the possible physical configurations of the components, using a simple biophysical model. We use a satisfaction modulo theories (SMT) solver to determine whether the constraint problem associated with a given structure is satisfiable, which corresponds to whether that structure is physically realizable given the constraints imposed by the tether geometry. We apply this technique to example structures from the literature, and discuss how this approach could be integrated with a reaction enumerator to enable fully automated analysis of tethered molecular computing systems.

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under grants 1525553, 1518861, and 1318833. The authors thank Neil Dalchau and Rasmus Petersen for productive discussions.

References

  1. 1.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRefGoogle Scholar
  2. 2.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)CrossRefGoogle Scholar
  3. 3.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  4. 4.
    Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. JRS Interface 9(68), 470–486 (2012)CrossRefGoogle Scholar
  6. 6.
    Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)CrossRefGoogle Scholar
  7. 7.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  8. 8.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  9. 9.
    Tikhomirov, G., Petersen, P., Qian, L.: Programmable disorder in random DNA tilings. Nat. Nanotechnol. 12, 251–259 (2017)CrossRefGoogle Scholar
  10. 10.
    Bui, H., Miao, V., Garg, S., Mokhtar, R., Song, T., Reif, J.: Design and analysis of localized DNA hybridization chain reactions. Small 13(12), 1602983 (2017)CrossRefGoogle Scholar
  11. 11.
    Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. In: Proceedings of ISCA 13 (2013)Google Scholar
  12. 12.
    Dalchau, N., Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Probabilistic analysis of localized DNA hybridization circuits. ACS Synth. Biol. 4(8), 898–913 (2015)CrossRefGoogle Scholar
  13. 13.
    Walsh, A.S., Yin, H., Erben, C.M., Wood, M.J.A., Turberfield, A.J.: DNA cage delivery to mammalian cells. ACS Nano 5(7), 5427–5432 (2011)CrossRefGoogle Scholar
  14. 14.
    Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA Circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Cham (2014). doi: 10.1007/978-3-319-11295-4_9 Google Scholar
  15. 15.
    Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based computation. Theor. Comput. Sci. 632, 43–73 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  17. 17.
    Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31365-3_27 CrossRefGoogle Scholar
  18. 18.
    Grun, C., Werfel, J., Zhang, D.Y., Yin, P.: DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology. JRS Interface 12, 20150580 (2015)CrossRefGoogle Scholar
  19. 19.
    Genot, A.J., Zhang, D.Y., Bath, J., Turberfield, A.J.: Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc. 133, 2177–2182 (2011)CrossRefGoogle Scholar
  20. 20.
    Doye, J.P.K., Ouldridge, T.E., Louis, A.A., Romano, F., Šulc, P., Matek, C., Snodin, B.E.K., Rovigatti, L., Schreck, J.S., Harrison, R.M., Smith, W.P.J.: Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15, 20395–20414 (2013)CrossRefGoogle Scholar
  21. 21.
    Dirks, R.M., Pierce, N.A.: An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25, 1295–1304 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Chemical and Biological EngineeringUniversity of New MexicoAlbuquerqueUSA
  4. 4.Microsoft ResearchCambridgeUK

Personalised recommendations