Development of Suitable Anode Materials for Microbial Fuel Cells

  • Thi Hiep Han
  • Sandesh Y. Sawant
  • Moo Hwan ChoEmail author


Microbial fuel cells (MFCs) and related bioelectrochemical systems (BESs) have shown impressive developments for many purposes over the past decade (Kalathil et al. 2012; Han et al. 2013, 2014, 2016). Even with the noticeable improvements in power density, the large-scale application of MFCs is still limited due to the low power generation and high cost (Wei et al. 2011). To take this technology from laboratory-scale research to commercial applications, the cost and the performance of these systems need to be optimized further. The anode electrode plays an important role in the performance and cost of MFCs. The electrode materials in MFCs have some general and individual characteristics. In general, electrode materials must have good conduction, excellent biocompatibility, good chemical stability, high mechanical strength and low cost. The anode material design has attracted an enormous number of studies over the past decade.


  1. Ahn, Y., Hatzell, M. C., Zhang, F., & Logan, B. E. (2014). Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. Journal of Power Sources, 249, 440–445.CrossRefGoogle Scholar
  2. Antonietti, M., Fechler, N., & Fellinger, T.-P. (2014). Carbon aerogels and monoliths: Control of porosity and nanoarchitecture via sol–gel routes. Chemistry of Materials, 26, 196–210.CrossRefGoogle Scholar
  3. Baudler, A., Schmidt, I., Langner, M., Greiner, A., & Schroder, U. (2015). Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy & Environmental Science, 8, 2048–2055.CrossRefGoogle Scholar
  4. Benetton, X. D., Navarro-Ávila, S. G., & Carrera-Figueiras, C. (2010). Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for syntheticwastewater treatment. Journal of New Materials for Electrochemical Systems, 13, 1–6.Google Scholar
  5. Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232.CrossRefGoogle Scholar
  6. Chen, S., Liu, Q., He, G., Zhou, Y., Hanif, M., Peng, X., Wang, S., & Hou, H. (2012). Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. Journal of Materials Chemistry, 22, 18609–18613.CrossRefGoogle Scholar
  7. Cheng, S., & Logan, B. E. (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, 9, 492–496.CrossRefGoogle Scholar
  8. Crittenden, S. R., Sund, C. J., & Sumner, J. J. (2006). Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir, 22, 9473–9476.CrossRefGoogle Scholar
  9. Deng, Q., Li, X., Zuo, J., Ling, A., & Logan, B. E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources, 195, 1130–1135.CrossRefGoogle Scholar
  10. Du, H., Bu, Y., Shi, Y., Zhong, Q., & Wang, J. (2016). Effect of an anode modified with nitrogenous compounds on the performance of a microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 527–533.CrossRefGoogle Scholar
  11. Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L., & Bergel, A. (2007). Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta, 53, 468–473.CrossRefGoogle Scholar
  12. Dumas, C., Basseguy, R., & Bergel, A. (2008). Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochimica Acta, 53, 5235–5241.CrossRefGoogle Scholar
  13. Dumitru, A., Morozan, A., Ghiurea, M., Scott, K., & Vulpe, S. (2008). Biofilm growth from wastewater on MWNTs and carbon aerogels. Physica Status Solidi (a), 205, 1484–1487.CrossRefGoogle Scholar
  14. Erable, B., & Bergel, A. (2009). First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Bioresource Technology, 100, 3302–3307.CrossRefGoogle Scholar
  15. Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources, 195, 1841–1844.CrossRefGoogle Scholar
  16. Garshol, T., & Hasvold, O. (1995). Galvanic seawater cell. Google Patents.Google Scholar
  17. Guo, K., Freguia, S., Dennis, P. G., Chen, X., Donose, B. C., Keller, J., Gooding, J. J., & Rabaey, K. (2013). Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environmental Science & Technology, 47, 7563–7570.CrossRefGoogle Scholar
  18. Guo, W., Cui, Y., Song, H., & Sun, J. (2014). Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess and Biosystems Engineering, 37, 1749–1758.CrossRefGoogle Scholar
  19. Gutierrez, M. C., Garcia-Carvajal, Z. Y., Hortiguela, M. J., Yuste, L., Rojo, F., Ferrer, M. L., & del Monte, F. (2007). Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. Journal of Materials Chemistry, 17, 2992–2995.CrossRefGoogle Scholar
  20. Han, T. H., Khan, M. M., Kalathil, S., Lee, J., & Cho, M. H. (2013). Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Industrial & Engineering Chemistry Research, 52, 8174–8181.CrossRefGoogle Scholar
  21. Han, T. H., Cho, M. H., & Lee, J. (2014). Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell. Biotechnology and Bioprocess Engineering, 19, 126–131.CrossRefGoogle Scholar
  22. Han, T. H., Sawant, S. Y., Hwang, S.-J., & Cho, M. H. (2016). Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Advances, 6, 25799–25807.CrossRefGoogle Scholar
  23. Haslett, N. D., Rawson, F. J., Barriëre, F., Kunze, G., Pasco, N., Gooneratne, R., & Baronian, K. H. R. (2011). Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors and Bioelectronics, 26, 3742–3747.CrossRefGoogle Scholar
  24. Hays, S., Zhang, F., & Logan, B. E. (2011). Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. Journal of Power Sources, 196, 8293–8300.CrossRefGoogle Scholar
  25. Hou, J., Liu, Z., Yang, S., & Zhou, Y. (2014). Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. Journal of Power Sources, 258, 204–209.CrossRefGoogle Scholar
  26. Hu, H., Zhao, Z., Wan, W., Gogotsi, Y., & Qiu, J. (2013). Ultralight and highly compressible graphene aerogels. Advanced Materials, 25, 2219–2223.CrossRefGoogle Scholar
  27. Huang, Y.-X., Liu, X.-W., Xie, J.-F., Sheng, G.-P., Wang, G.-Y., Zhang, Y.-Y., Xu, A.-W., & Yu, H.-Q. (2011). Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications, 47, 5795–5797.CrossRefGoogle Scholar
  28. Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D., & Li, B. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36, 876–884.CrossRefGoogle Scholar
  29. Kalathil, S., Lee, J., & Cho, M. H. (2011). Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 29, 32–37.CrossRefGoogle Scholar
  30. Kalathil, S., Lee, J., & Cho, M. H. (2012). Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technology, 119, 22–27.CrossRefGoogle Scholar
  31. Kalathil, S., Nguyen, V. H., Shim, J.-J., Khan, M. M., Lee, J., & Cho, M. H. (2013). Enhanced Performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. Journal of Nanoscience and Nanotechnology, 13, 7712–7716.CrossRefGoogle Scholar
  32. Karthikeyan, R., Krishnaraj, N., Selvam, A., Wong, J. W.-C., Lee, P. K. H., Leung, M. K. H., & Berchmans, S. (2016). Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresource Technology, 217, 113–120.CrossRefGoogle Scholar
  33. Katuri, K., Ferrer, M. L., Gutierrez, M. C., Jimenez, R., del Monte, F., & Leech, D. (2011). Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy & Environmental Science, 4, 4201–4210.CrossRefGoogle Scholar
  34. Kumar, G. G., Sarathi, V. G. S., & Nahm, K. S. (2013). Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors and Bioelectronics, 43, 461–475.CrossRefGoogle Scholar
  35. Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26, 3000–3004.CrossRefGoogle Scholar
  36. Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281–2285.CrossRefGoogle Scholar
  37. Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39, 5488–5493.CrossRefGoogle Scholar
  38. Liu, J., Liu, J., He, W., Qu, Y., Ren, N., & Feng, Y. (2014). Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. Journal of Power Sources, 265, 391–396.CrossRefGoogle Scholar
  39. Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41, 3341–3346.CrossRefGoogle Scholar
  40. Logan, B. E. (2008). Microbial fuel cells (p. 53). Hoboken: Wiley.Google Scholar
  41. Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., & Lovley, D. R. (2006). Harvesting energy from the marine sediment–water interface. II: Kinetic activity of anode materials. Biosensors and Bioelectronics, 21, 2058–2063.CrossRefGoogle Scholar
  42. Mapelli, C., Mapelli, V., Olsson, L., Mombelli, D., Gruttadauria, A., & Barella, S. (2013). Viability study of the use of cast iron open cell foam as microbial fuel cell electrodes. Advanced Engineering Materials, 15, 112–117.CrossRefGoogle Scholar
  43. Michaelidou, U., ter Heijne, A., Euverink, G. J. W., Hamelers, H. V. M., Stams, A. J. M., & Geelhoed, J. S. (2011). Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Applied and Environmental Microbiology, 77, 1069–1075.CrossRefGoogle Scholar
  44. Mink, J. E., & Hussain, M. M. (2013). Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano, 7, 6921–6927.CrossRefGoogle Scholar
  45. Nardecchia, S., Carriazo, D., Ferrer, M. L., Gutierrez, M. C., & del Monte, F. (2013). Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chemical Society Reviews, 42, 794–830.CrossRefGoogle Scholar
  46. Pham, T. H., Aelterman, P., & Verstraete, W. (2009). Bioanode performance in bioelectrochemical systems: Recent improvements and prospects. Trends in Biotechnology, 27, 168–178.CrossRefGoogle Scholar
  47. Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J.-Y., & Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology, 78, 5212–5219.CrossRefGoogle Scholar
  48. Qiao, Y., Li, C. M., Bao, S.-J., & Bao, Q.-L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170, 79–84.CrossRefGoogle Scholar
  49. Qiao, Y., Wu, X.-S., Ma, C.-X., He, H., & Li, C. M. (2014). A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. RSC Advances, 4, 21788–21793.CrossRefGoogle Scholar
  50. Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25, 1531–1535.CrossRefGoogle Scholar
  51. Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72, 7345–7348.CrossRefGoogle Scholar
  52. Rhoads, A., Beyenal, H., & Lewandowski, Z. (2005). Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science & Technology, 39, 4666–4671.CrossRefGoogle Scholar
  53. Richter, H., McCarthy, K., Nevin, K. P., Johnson, J. P., Rotello, V. M., & Lovley, D. R. (2008). Electricity generation by geobacter sulfurreducens attached to gold electrodes. Langmuir, 24, 4376–4379.CrossRefGoogle Scholar
  54. Roh, S.-H., & Woo, H.-G. (2015). Carbon nanotube composite electrode coated with polypyrrole for microbial fuel cell application. Journal of Nanoscience and Nanotechnology, 15, 484–487.CrossRefGoogle Scholar
  55. Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J., & Buisman, C. J. N. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26, 450–459.CrossRefGoogle Scholar
  56. Scott, K., Rimbu, G. A., Katuri, K. P., Prasad, K. K., & Head, I. M. (2007). Application of modified carbon anodes in microbial fuel cells. Process Safety and Environmental Protection, 85, 481–488.CrossRefGoogle Scholar
  57. Sell, D., Krämer, P., & Kreysa, G. (1989). Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell. Applied Microbiology and Biotechnology, 31, 211–213.CrossRefGoogle Scholar
  58. Sun, J.-J., Zhao, H.-Z., Yang, Q.-Z., Song, J., & Xue, A. (2010). A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell. Electrochimica Acta, 55, 3041–3047.CrossRefGoogle Scholar
  59. Tang, X., Guo, K., Li, H., Du, Z., & Tian, J. (2011). Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresource Technology, 102, 3558–3560.CrossRefGoogle Scholar
  60. ter Heijne, A., Hamelers, H. V. M., Saakes, M., & Buisman, C. J. N. (2008). Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta, 53, 5697–5703.CrossRefGoogle Scholar
  61. Wang, H., Côté, R., Faubert, G., Guay, D., & Dodelet, J. P. (1999). Effect of the pre-treatment of carbon black supports on the activity of fe-based electrocatalysts for the reduction of oxygen. The Journal of Physical Chemistry B, 103, 2042–2049.CrossRefGoogle Scholar
  62. Wang, X., Feng, Y. J., & Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science and Technology, 57, 1117–1121.CrossRefGoogle Scholar
  63. Wang, X., Cheng, S., Feng, Y., Merrill, M. D., Saito, T., & Logan, B. E. (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science & Technology, 43, 6870–6874.CrossRefGoogle Scholar
  64. Wang, H., Wang, G., Ling, Y., Qian, F., Song, Y., Lu, X., Chen, S., Tong, Y., & Li, Y. (2013a). High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale, 5, 10283–10290.CrossRefGoogle Scholar
  65. Wang, Y., Zhao, C.-E., Sun, D., Zhang, J.-R., & Zhu, J.-J. (2013b). A graphene/poly (3,4-ethylenedioxythiophene) hybrid as an anode for high-performance microbial fuel cells. ChemPlusChem, 78, 823–829.CrossRefGoogle Scholar
  66. Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102, 9335–9344.CrossRefGoogle Scholar
  67. Wen, Q., Wu, Y., Zhao, L.-X., Sun, Q., & Kong, F.-Y. (2010). Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. Journal of Zhejiang University SCIENCE B, 11, 87–93.CrossRefGoogle Scholar
  68. Xie, X., Hu, L., Pasta, M., Wells, G. F., Kong, D., Criddle, C. S., & Cui, Y. (2011). Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Letters, 11, 291–296.CrossRefGoogle Scholar
  69. Xie, X., Ye, M., Hu, L., Liu, N., McDonough, J. R., Chen, W., Alshareef, H. N., Criddle, C. S., & Cui, Y. (2012a). Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy & Environmental Science, 5, 5265–5270.CrossRefGoogle Scholar
  70. Xie, X., Yu, G., Liu, N., Bao, Z., Criddle, C. S., & Cui, Y. (2012b). Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science, 5, 6862–6866.CrossRefGoogle Scholar
  71. Xie, X., Criddle, C., & Cui, Y. (2015). Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy & Environmental Science, 8, 3418–3441.CrossRefGoogle Scholar
  72. You, S., Zhao, Q., Zhang, J., Jiang, J., Wan, C., Du, M., & Zhao, S. (2007). A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources, 173, 172–177.CrossRefGoogle Scholar
  73. Yuan, Y., & Kim, S.-H. (2008). Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. Bulletin of the Korean Chemical Society, 29, 1344–1348.CrossRefGoogle Scholar
  74. Yuan, Y., Zhou, S., Liu, Y., & Tang, J. (2013). Nanostructured macroporous bioanode based on polyaniline-modified natural Loofah sponge for high-performance microbial fuel cells. Environmental Science & Technology, 47, 14525–14532.Google Scholar
  75. Zhang, F., Saito, T., Cheng, S., Hickner, M. A., & Logan, B. E. (2010). Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology, 44, 1490–1495.CrossRefGoogle Scholar
  76. Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. T. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology, 42, 4971–4976.CrossRefGoogle Scholar
  77. Zhao, Y., Watanabe, K., Nakamura, R., Mori, S., Liu, H., Ishii, K., & Hashimoto, K. (2010). Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chemistry - A European Journal, 16, 4982–4985.CrossRefGoogle Scholar
  78. Zhao, C., Wang, Y., Shi, F., Zhang, J., & Zhu, J.-J. (2013). High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chemical Communications, 49, 6668–6670.CrossRefGoogle Scholar
  79. Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196, 4427–4435.CrossRefGoogle Scholar
  80. Zhou, M., Chi, M., Wang, H., & Jin, T. (2012). Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochemical Engineering Journal, 60, 151–155.CrossRefGoogle Scholar
  81. Zhu, C., Han, T. Y.-J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 6, 6962.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company, New Delhi, India 2018

Authors and Affiliations

  • Thi Hiep Han
    • 1
  • Sandesh Y. Sawant
    • 1
  • Moo Hwan Cho
    • 1
    Email author
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations