Skip to main content

Characteristics of Microbes Involved in Microbial Fuel Cell

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

The ability of certain microorganisms to transfer electrons outside the cell has given rise to plethora of applications. These bacteria utilize different electron acceptors – usually metals like iron, manganese etc. In nature, these bacteria play a pivotal role in carbon cycle, metal oxidation or reduction, removal of waste organic matter, decomposition of aromatic compounds etc. Apart from this, certain bacteria known as exoelectrogens can use solid electrodes as terminal electron acceptors. These bacteria are utilized in microbial fuel cells (MFC) for bioenergy in the form of electricity. An MFC is different from the typical fuel cell. In an MFC, bacteria create electrical power by oxidising the organic matter present in wastewater which stabilizes the same at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alatraktchi, F. A., Zhang, Y., & Angelidaki, I. (2014). Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Applied Energy, 116, 216–222.

    Article  CAS  Google Scholar 

  • Baranitharan, E., Khan, M. R., et al. (2015). Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent. Bioprocess and Biosystems Engineering, 38, 15–24.

    Article  CAS  Google Scholar 

  • Beecroft, N. J., Zhao, F., et al. (2012). Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Applied Microbiology and Biotechnology, 93, 423–437.

    Article  Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69, 1548–1555.

    Article  CAS  Google Scholar 

  • Borole, A. P., O’Neill, H., Tsouris, C., & Cesar, S. (2008). A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters, 30, 1367–1372.

    Article  CAS  Google Scholar 

  • Chabert, N., Amin Ali, O., & Achouak, W. (2015). All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry, 106, 88–96.

    Article  CAS  Google Scholar 

  • Chae, K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 100, 3518–3525.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232.

    Article  CAS  Google Scholar 

  • Cheng, S., Liu, H., & Logan, B. E. (2006a). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8, 489–494.

    Article  CAS  Google Scholar 

  • Cheng, S., Liu, H., & Logan, B. E. (2006b). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40, 2426–2432.

    Article  CAS  Google Scholar 

  • Curtis, T. P., & Sloan, W. T. (2005). Microbiology. Exploring microbial diversity – A vast below. Science, 309, 1331–1333.

    Article  CAS  Google Scholar 

  • De Schamphelaire, L., Rabaey, K., Boeckx, P., Boon, N., & Verstraete, W. (2008). Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microbial Biotechnology, 1, 446–462.

    Article  Google Scholar 

  • Dopson, M., Ni, G., & Sleutels, T. H. (2016). Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiology Reviews, 40, 164–181.

    Article  CAS  Google Scholar 

  • Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 6, 596–604.

    Article  CAS  Google Scholar 

  • He, Z., Wagner, N., Minteer, S. D., & Angenent, L. T. (2006). An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environmental Science & Technology, 40, 5212–5217.

    Article  CAS  Google Scholar 

  • He, Z., Huang, Y., Manohar, A. K., & Mansfeld, F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry, 74, 78–82.

    Article  CAS  Google Scholar 

  • Holmes, D. E., Nicoll, J. S., Bond, D. R., & Lovley, D. R. (2004). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology, 70, 6023–6030.

    Article  CAS  Google Scholar 

  • Huang, L., Regan, J. M., & Quan, X. (2011). Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 102, 316–323.

    Article  CAS  Google Scholar 

  • Iskander, S. M., Brazil, B., Novak, J. T., & He, Z. (2016). Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives. Bioresource Technology, 201, 347–354.

    Article  CAS  Google Scholar 

  • Jong, B. C., Kim, B. H., Chang, I. S., Liew, P. W. Y., Choo, Y. F., & Kang, G. S. (2006). Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environmental Science & Technology, 40, 6449–6454.

    Article  CAS  Google Scholar 

  • Jung, S., & Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology, 77, 393–402.

    Article  CAS  Google Scholar 

  • Kaushik, A., & Chetal, A. (2013). Power generation in microbial fuel cell fed with post methanation distillery effluent as a function of pH microenvironment. Bioresource Technology, 147, 77–83.

    Article  CAS  Google Scholar 

  • Larrosa-Guerrero, A., Scott, K., Head, I. M., Mateo, F., Ginesta, A., & Godinez, C. (2010). Effect of temperature on the performance of microbial fuel cells. Fuel, 89, 3985–3994.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology, 7, 375–381.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14, 512–518.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2011). Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environmental Microbiology Reports, 3, 27–35.

    Article  CAS  Google Scholar 

  • Mashkour, M., & Rahimnejad, M. (2015). Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Research Journal, 2, 296–300.

    Article  CAS  Google Scholar 

  • Michie, I. S., Kim, J. R., Dinsdale, R. M., Guwy, A. J., & Premier, G. C. (2011). The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Energy & Environmental Science, 4, 1011–1019.

    Article  CAS  Google Scholar 

  • Mocali, S., Galeffi, C., Perrin, E., Florio, A., Migliore, M., Canganella, F., Bianconi, G., Di Mattia, E., Dell’Abate, M. T., Fani, R., & Benedetti, A. (2013). Alteration of bacterial communities and organic matter in microbial fuel cells (MFCs) supplied with soil and organic fertilizer. Applied Microbiology and Biotechnology, 97, 1299–1315.

    Article  CAS  Google Scholar 

  • Moon, H., Chang, I. S., & Kim, B. H. (2006). Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresource Technology, 97, 621–627.

    Article  CAS  Google Scholar 

  • Oh, S. T., Kim, J. R., Premier, G. C., Lee, T. H., Kim, C., & Sloan, W. T. (2010). Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnology Advances, 28, 871–881.

    Article  CAS  Google Scholar 

  • Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101, 1533–1543.

    Article  CAS  Google Scholar 

  • Patil, S. A., Harnisch, F., Koch, C., Hubschmann, T., Felzer, I., Carmona-Martinez, A. A., Muller, S., & Schroder, U. (2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresource Technology, 102, 9683–9690.

    Article  CAS  Google Scholar 

  • Pham, T. H., Aelterman, P., & Verstraete, W. (2009). Bioanode performance in bioelectrochemical systems: Recent improvements and prospects. Trends in Biotechnology, 27, 168–178.

    Article  CAS  Google Scholar 

  • Prasad, D., Sivaram, T. K., Berchmans, S., & Yegnaraman, V. (2006). Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. Journal of Power Sources, Special issue, 160, 991–996.

    Article  CAS  Google Scholar 

  • Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D., & Colprim, J. (2010). Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresource Technology, 101, 9594–9599.

    Article  CAS  Google Scholar 

  • Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25, 1531–1535.

    Article  CAS  Google Scholar 

  • Raghavulu, S. V., Mohan, S. V., Goud, R. K., & Sarma, P. N. (2009). Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochemistry Communications, 11, 371–375.

    Article  CAS  Google Scholar 

  • Ringeisen, B. R., Henderson, E., & Jones-Meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science & Technology, 40, 2629–2634.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Aulenta, F., Villano, M., & Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresource Technology, 102, 324–333.

    Article  CAS  Google Scholar 

  • Schroder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, 2619–2629.

    Article  Google Scholar 

  • Sotres, A., Díaz-Marcos, J., et al. (2015). Microbial community dynamics in two-chambered microbial fuel cells: Effect of different ion exchange membranes. Journal of Chemical Technology and Biotechnology, 90, 1497–1506.

    Article  CAS  Google Scholar 

  • Sun, Y., Wei, J., Liang, P., & Huang, X. (2012). Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express, 2, 21.

    Article  CAS  Google Scholar 

  • Tender, L. M., Gray, S. A., et al. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources, 179, 571–575.

    Article  CAS  Google Scholar 

  • Varanasi, J. L., Roy, S., Pandit, S., & Das, D. (2015). Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell. International Journal of Hydrogen Energy, 40, 8311–8321.

    Article  CAS  Google Scholar 

  • Varanasi, J. L., Nayak, A. K., Sohn, Y., Pradhan, D., & Das, D. (2016). Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochimica Acta, 199, 154–163.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Veer Raghavulu, S., & Sarma, P. N. (2008). Biochemical evaluation of bioelectricity production process from anaerobic wastewater treatment in a single chambered microbial fuel cell (MFC) employing glass wool membrane. Biosensors & Bioelectronics, 23, 1326–1332.

    Article  CAS  Google Scholar 

  • Wrighton, K. C., Agbo, P., & Coates, J. D. (2008). A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. The ISME Journal, 2, 1146–1156.

    Article  CAS  Google Scholar 

  • Wrighton, K. C., Thrash, J. C., & Coates, J. D. (2011). Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Applied and Environmental Microbiology, 77, 7633–7639.

    Article  CAS  Google Scholar 

  • Yong, Y.-C., Cai, Z., Yu, Y.-Y., Chen, P., et al. (2013). Increase of riboflavin biosynthesis un erlies enhancement of extracellular electron transfer of Shewanella in alkaline microbial fuel cells. Bioresource Technology, 130, 763–768.

    Article  CAS  Google Scholar 

  • You, S. J., Zhao, Q. L., Jiang, J. Q., Zhang, J. N., & Zhao, S. Q. (2006a). Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal of Environmental Science and Health, Part A, Toxic and Hazardous Substance Environmental Engineering, 41, 2721–2734.

    Article  CAS  Google Scholar 

  • You, S., Zhao, Q., Zhang, J., Jiang, J., & Zhao, S. (2006b). A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources, Special issue, 162, 1409–1415.

    Article  CAS  Google Scholar 

  • Zhang, T., Cui, C., Chen, S., Ai, X., Yang, H., Shen, P., & Peng, Z. (2006). A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chemical Communications (Cambridge), 21, 2257–2259.

    Article  Google Scholar 

  • Zhi, W., Ge, Z., He, Z., & Zhang, H. (2014). Methods for understanding microbial community structures and functions in microbial fuel cells: A review. Bioresource Technology, 171, 461–468.

    Article  CAS  Google Scholar 

  • Zhou, L., Deng, D., Zhang, D., Chen, Q., Kang, J., Fan, N., & Liu, Y. (2016). Microbial electricity generation and isolation of exoelectrogenic bacteria based on petroleum hydrocarbon-contaminated soil. Electroanalysis, 28(7), 1510–1516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varanasi, J.L., Das, D. (2018). Characteristics of Microbes Involved in Microbial Fuel Cell. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_3

Download citation

Publish with us

Policies and ethics