Microbially Mediated Electrosynthesis Processes

Chapter

Abstract

As stated by Lovley (2008), an environmental niche of any given microorganism can make it function as electrode reducer or an electrode oxidizer, just as microorganisms can function either as iron reducer or iron acceptor depending on environmental conditions. Electron transfer on microbial-electrode interfaces is a result of evolutionary capabilities of some microbes to perform effective extracellular exchange with insoluble minerals and related natural electron acceptors and donors (Lovley 2012). BES technology is capable of converting chemical energy of organic wastes including low-strength wastewaters and lignocellulosic biomass into electricity or other value added products. All BES consist of an anode where the oxidation reaction occurs and a cathode for the reductions, and at least one of these reactions is microbially catalyzed, hence classified as microbial bioanode and biocathode respectively (Rabaey et al. 2010a). In bioanodes, bacteria called exoelectrogens oxidize organic or inorganic matter anaerobically to discharge electrons, which are transferred through the electron transport chain to the electrode directly or indirectly. In biocathodes, bacteria called electrotrophs receive the electrons from the cathode directly or via some redox mediators to reduce compounds like organics, carbon dioxide, sulphate or nitrate (Gregory et al. 2004; Rabaey et al. 2010a). As compared to conventional fuel cells, the BES operates under relatively mild conditions of temperature and pressure, using a wide variety of organic substrates and mostly without using expensive precious metals as catalysts. BES presents a wide number of advantages when compared to classical routes towards sustainable energy production like generation of electric power, chemical or ecological goods from renewable and non-carbon fuel sources. As a consequence, their applicability is not restricted to their geographic location, thus promoting resource independency, accessibility, decentralization, self-sufficiency, and environmentally safe practices. Electroactive microorganisms have characteristic electron exchange properties with conducting materials (Lovley 2008). For this electron exchange, either they release some redox mediators that facilitate indirect electron transfer by acting as redox shuttles or they directly take part in electron transfer through c-type cytochromes, by production of conductive exopolymeric materials or by forming conductive biofilm matrix (Fig. 22.1).

References

  1. Aulenta, F., Catapano, L., Snip, L., Villano, M., & Majone, M. (2012). Linking bacterial metabolism to graphite cathodes: Electrochemical insights into the H2-producing capability of Desulfovibrio sp. ChemSusChem, 5(6), 1080–1085.CrossRefGoogle Scholar
  2. Bajracharya, S., ter Heijne, A., Benetton, X. D., Vanbroekhoven, K., Buisman, C. J., Strik, D. P., & Pant, D. (2015). Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresource Technology, 195, 14–24.CrossRefGoogle Scholar
  3. Bajracharya, S., Sharma, M., Mohanakrishna, G., Benneton, X. D., Strik, D. P., Sarma, P. M., & Pant, D. (2016). An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renewable Energy, 98, 153–170.CrossRefGoogle Scholar
  4. Beese-Vasbender, P. F., Grote, J. P., Garrelfs, J., Stratmann, M., & Mayrhofer, K. J. (2015). Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry, 102, 50–55.CrossRefGoogle Scholar
  5. Bonmati, A., Sotres, A., Mu, Y., Rozendal, R., & Rabaey, K. (2013). Oxalate degradation in a bioelectrochemical system: Reactor performance and microbial community characterization. Bioresource Technology, 143, 147–153.CrossRefGoogle Scholar
  6. Call, D., & Logan, B. E. (2008). Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology, 42(9), 3401–3406.CrossRefGoogle Scholar
  7. Carmona-Martínez, A. A., Pierra, M., Trably, E., & Bernet, N. (2013). High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus. Physical Chemistry Chemical Physics, 15(45), 19699–19707.CrossRefGoogle Scholar
  8. Chen, G. W., Choi, S. J., Lee, T. H., Lee, G. Y., Cha, J. H., & Kim, C. W. (2008). Application of biocathode in microbial fuel cells: Cell performance and microbial community. Applied Microbiology and Biotechnology, 79(3), 379–388.Google Scholar
  9. Chen, S., He, G., Liu, Q., Harnisch, F., Zhou, Y., Chen, Y., Hanif, M., Wang, S., Peng, X., Hou, H., & Schröder, U. (2012a). Layered corrugated electrode macrostructures boost microbial bioelectro catalysis. Energy & Environmental Science, 5(12), 9769–9772.CrossRefGoogle Scholar
  10. Chen, S., Liu, G., Zhang, R., Qin, B., & Luo, Y. (2012b). Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology, 46(4), 2467–2472.CrossRefGoogle Scholar
  11. Cheng, S., & Logan, B. E. (2011). High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology, 102(3), 3571–3574.CrossRefGoogle Scholar
  12. Cheng, S., Xing, D., Call, D. F., & Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10), 3953–3958.CrossRefGoogle Scholar
  13. Clauwaert, P., Van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., & Verstraete, W. (2007). Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science & Technology, 41(21), 7564–7569.CrossRefGoogle Scholar
  14. Desloover, J., Arends, J., Hennebel, T., & Rabaey, K. (2012). Operational and technical considerations for microbial electrosynthesis. Biochemical Society Transactions, 40(6), 1233–1238.CrossRefGoogle Scholar
  15. Dumas, C., Basseguy, R., & Bergel, A. (2008). Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochimica Acta, 53(5), 2494–2500.CrossRefGoogle Scholar
  16. Feng, H., Zhang, X., Liang, Y., Wang, M., Shen, D., Ding, Y., Huang, B., & Shentu, J. (2014). Enhanced removal of p-fluoronitrobenzene using bioelectrochemical system. Water Research, 60, 54–63.CrossRefGoogle Scholar
  17. Ganigué, R., Puig, S., Batlle-Vilanova, P., Balaguer, M. D., & Colprim, J. (2015). Microbial electrosynthesis of butyrate from carbon dioxide. Chemical Communications, 51(15), 3235–3238.CrossRefGoogle Scholar
  18. Giddings, C. G., Nevin, K. P., Woodward, T., Lovley, D. R., & Butler, C. S. (2015). Simplifying microbial electrosynthesis reactor design. Frontiers in Microbiology, 6, 1–6.CrossRefGoogle Scholar
  19. Gildemyn, S., Verbeeck, K., Slabbinck, R., Andersen, S. J., Prévoteau, A., & Rabaey, K. (2015). Integrated production, extraction and concentration of acetic acid from CO2 through microbial electrosynthesis. Environmental Science & Technology Letters, 2(11), 325–328.CrossRefGoogle Scholar
  20. Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 6(6), 596–604.CrossRefGoogle Scholar
  21. Guo, K., Prévoteau, A., Patil, S. A., & Rabaey, K. (2015). Engineering electrodes for microbial electrocatalysis. Current Opinion in Biotechnology, 33, 149–156.CrossRefGoogle Scholar
  22. Gurung, A., Kim, J., Jung, S., Jeon, B. H., Yang, J. E., & Oh, S. E. (2012). Effects of substrate concentrations on performance of serially connected microbial fuel cells (MFCs) operated in a continuous mode. Biotechnology Letters, 34(10), 1833–1839.CrossRefGoogle Scholar
  23. He, A. Y., Yin, C. Y., Xu, H., Kong, X. P., Xue, J. W., Zhu, J., Jiang, M., & Wu, H. (2016). Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. Bioprocess and Biosystems Engineering, 39(2), 245–254.CrossRefGoogle Scholar
  24. Huang, L., Regan, J. M., & Quan, X. (2011). Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 102(1), 316–323.CrossRefGoogle Scholar
  25. Huang, L., Jiang, L., Wang, Q., Quan, X., Yang, J., & Chen, L. (2014). Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chemical Engineering Journal, 253, 281–290.CrossRefGoogle Scholar
  26. Jeremiasse, A. W., Hamelers, H. V., Saakes, M., & Buisman, C. J. (2010). Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 35(23), 12716–12723.CrossRefGoogle Scholar
  27. Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., & Li, D. (2013). Bioelectrochemical systems for simultaneous production of methane and acetate from carbon dioxide at relatively high rate. International Journal of Hydrogen Energy, 38(8), 3497–3502.CrossRefGoogle Scholar
  28. Jourdin, L., Freguia, S., Donose, B. C., Chen, J., Wallace, G. G., Keller, J., & Flexer, V. (2014). A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2(32), 13093–13102.CrossRefGoogle Scholar
  29. Jourdin, L., Grieger, T., Monetti, J., Flexer, V., Freguia, S., Lu, Y., Chen, J., Romano, M., Wallace, G. G., & Keller, J. (2015). High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environmental Science & Technology, 49(22), 13566–13574.CrossRefGoogle Scholar
  30. Ki, D., Popat, S. C., & Torres, C. I. (2016). Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization. Chemical Engineering Journal, 287, 181–188.CrossRefGoogle Scholar
  31. Kracke, F., & Krömer, J. O. (2014). Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics, 15(1), 1.CrossRefGoogle Scholar
  32. Krieg, T., Sydow, A., Schröder, U., Schrader, J., & Holtmann, D. (2014). Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends in Biotechnology, 32(12), 645–655.Google Scholar
  33. Lee, J. Y., Lee, S. H., & Park, H. D. (2016). Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresource Technology, 205, 205–212.CrossRefGoogle Scholar
  34. Lefebvre, O., Tan, Z., Kharkwal, S., & Ng, H. Y. (2012). Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresource Technology, 112, 336–340.CrossRefGoogle Scholar
  35. Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39(14), 5488–5493.CrossRefGoogle Scholar
  36. Logan, B. E. (2012). Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem, 5(6), 988–994.CrossRefGoogle Scholar
  37. Logan, B. E., & Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337(6095), 686–690.CrossRefGoogle Scholar
  38. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.CrossRefGoogle Scholar
  39. Lovley, D. R. (2008). The microbe electric: Conversion of organic matter to electricity. Current Opinion in Biotechnology, 19, 564–571.CrossRefGoogle Scholar
  40. Lovley, D. R. (2011). Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environmental Microbiology Reports, 3(1), 27–35.CrossRefGoogle Scholar
  41. Lovley, D. R. (2012). Electromicrobiology. Annual Review of Microbiology, 66, 391–409.Google Scholar
  42. Lovley, D. R., & Nevin, K. P. (2013). Electrobiocommodities: Powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Current Opinion in Biotechnology, 24(3), 385–390.CrossRefGoogle Scholar
  43. Marsili, E., & Bond, D. (2007). Electrochemical methods for observing electron transfer from bacterial biofilms to conductive surfaces. In Meeting abstracts. The Electrochemical Society No. 8, Abstract 454.Google Scholar
  44. Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., & May, H. D. (2012). Electrosynthesis of commodity chemicals by an autotrophic microbial community. Applied and Environmental Microbiology, 78(23), 8412–8420.CrossRefGoogle Scholar
  45. Marshall, C. W., LaBelle, E. V., & May, H. D. (2013a). Production of fuels and chemicals from waste by microbiomes. Current Opinion in Biotechnology, 24(3), 391–397.CrossRefGoogle Scholar
  46. Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., & May, H. D. (2013b). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environmental Science & Technology, 47(11), 6023–6029.CrossRefGoogle Scholar
  47. Modin, O., Wang, X., Wu, X., Rauch, S., & Fedje, K. K. (2012). Bioelectrochemical recovery of Cu Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials, 235, 291–297.CrossRefGoogle Scholar
  48. Mohanakrishna, G., Vanbroekhoven, K., & Pant, D. (2016). Imperative role of applied potential and inorganic carbon source on acetate production through microbial electrosynthesis. Journal of CO 2 Utilization, 15, 57–64.Google Scholar
  49. Molenaar, S. D., Mol, A. R., Sleutels, T. H., TerHeijne, A., & Buisman, C. J. (2016). Microbial rechargeable battery: Energy storage and recovery through acetate. Environmental Science & Technology Letters, 3(4), 144–149.CrossRefGoogle Scholar
  50. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio, 1(2), e00103-10.CrossRefGoogle Scholar
  51. Nevin, K. P., Hensley, S. A., Franks, A. E., Summers, Z. M., Ou, J., Woodard, T. L., Snoeyenbos-West, O. L., & Lovley, D. R. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Applied and Environmental Microbiology, 77(9), 2882–2886.CrossRefGoogle Scholar
  52. Nie, H., Zhang, T., Cui, M., Lu, H., Lovley, D. R., & Russell, T. P. (2013). Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Physical Chemistry Chemical Physics, 15(34), 14290–14294.CrossRefGoogle Scholar
  53. Patil, S. A., Arends, J. B., Vanwonterghem, I., Van Meerbergen, J., Guo, K., Tyson, G. W., & Rabaey, K. (2015). Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2. Environmental Science & Technology, 49(14), 8833–8843.CrossRefGoogle Scholar
  54. Pham, T. H., Aelterman, P., & Verstraete, W. (2009). Bioanode performance in bioelectrochemical systems: Recent improvements and prospects. Trends in Biotechnology, 27(3), 168–178.CrossRefGoogle Scholar
  55. Qin, C., Chen, C., Xie, Q., Wang, L., He, X., Huang, Y., Zhou, Y., Xie, F., Yang, D., & Yao, S. (2012). Amperometric enzyme electrodes of glucose and lactate based on poly (DADMAC)-alginate-metal ion-enzyme biocomposites. Analytica Chimica Acta, 720, 49–56.CrossRefGoogle Scholar
  56. Rabaey, K., Rodriguez, J., Blackall, L. L., Keller, J., Gross, P., Batstone, D., Verstraete, W., & Nealson, K. H. (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, 1(1), 9–18.Google Scholar
  57. Rabaey, K., & Rozendal, R. A. (2010). Microbial electrosynthesis: Revisiting the electrical route for microbial production. Nature Reviews Microbiology, 8(10), 706–716.CrossRefGoogle Scholar
  58. Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology, 23(6), 291–298.CrossRefGoogle Scholar
  59. Rabaey, K., Angenent, L., Schroder, U., & Keller, J. (Eds.). (2010a). Bioelectro-chemical systems: From extracellular electron transfer to biotechnological application (1st ed.). London: IWA Publishing.Google Scholar
  60. Rabaey, K., Butzer, S., Brown, S., Keller, J., & Rozendal, R. A. (2010b). High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology, 44(11), 4315–4321.CrossRefGoogle Scholar
  61. Rosenbaum, M. A., & Franks, A. E. (2014). Microbial catalysis in bioelectrochemical technologies: Status quo, challenges and perspectives. Applied Microbiology and Biotechnology, 98(2), 509–518.CrossRefGoogle Scholar
  62. Rousseau, R., Dominguez-Benetton, X., Délia, M. L., & Bergel, A. (2013). Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells. Electrochemistry Communications, 33, 1–4.CrossRefGoogle Scholar
  63. Roy, S., Schievano, A., & Pant, D. (2016). Electro-stimulated microbial factory for value added product synthesis. Bioresource Technology, 213, 129–139.CrossRefGoogle Scholar
  64. Rozendal, R. A., Hamelers, H. V., Euverink, G. J., Metz, S. J., & Buisman, C. J. (2006). Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy, 31(12), 1632–1640.CrossRefGoogle Scholar
  65. Rozendal, R. A., Leone, E., Keller, J., & Rabaey, K. (2009). Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochemistry Communications, 11(9), 1752–1755.CrossRefGoogle Scholar
  66. Sadhukhan, J., Lloyd, J. R., Scott, K., Premier, G. C., Eileen, H. Y., Curtis, T., & Head, I. M. (2016). A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renewable and Sustainable Energy Reviews, 56, 116–132.CrossRefGoogle Scholar
  67. Sharma, M., Aryal, N., Sarma, P. M., Vanbroekhoven, K., Lal, B., Benetton, X. D., & Pant, D. (2013a). Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chemical Communications, 49, 6495–6497.CrossRefGoogle Scholar
  68. Sharma, M., Jain, P., Varanasi, J. L., Lal, B., Rodríguez, J., Lema, J. M., & Sarma, P. M. (2013b). Enhanced performance of SRB based biocathode using stainless steel mesh on activated carbon fabric electrode. Bioresource Technology, 150, 172–180.CrossRefGoogle Scholar
  69. Sharma, M., Bajracharya, S., Gildemyn, S., Patil, S. A., Alvarez-Gallego, Y., Pant, D., Rabaey, K., & Dominguez-Benetton, X. (2014a). A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochimica Acta, 140, 191–208.CrossRefGoogle Scholar
  70. Sharma, M., Varanasi, J. L., Jain, P., Dureja, P., Lal, B., Dominguez-Benetton, X., Pant, D., & Sarma, P. M. (2014b). Influence of headspace composition on product diversity by sulphate reducing bacteria biocathode. Bioresource Technology, 165, 365–371.CrossRefGoogle Scholar
  71. Sharma, M., Sarma, P. M., Pant, D., & Dominguez-Benetton, X. (2015). Optimization of electrochemical parameters for SRB based biocathode. RSC Advances, 5(49), 39601–39611.CrossRefGoogle Scholar
  72. Sleutels, T. H., Hamelers, H. V., Rozendal, R. A., & Buisman, C. J. (2009). Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. International Journal of Hydrogen Energy, 34(9), 3612–3620.CrossRefGoogle Scholar
  73. Sleutels, T. H., ter Heijne, A., Buisman, C. J., & Hamelers, H. V. (2012). Bioelectrochemical systems: An outlook for practical applications. ChemSusChem, 5(6), 1012–1019.CrossRefGoogle Scholar
  74. Steinbusch, K. J., Hamelers, H. V., Schaap, J. D., Kampman, C., & Buisman, C. J. (2009). Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology, 44(1), 513–517.CrossRefGoogle Scholar
  75. Strycharz, S. M., Woodard, T. L., Johnson, J. P., Nevin, K. P., Sanford, R. A., Löffler, F. E., & Lovley, D. R. (2008). Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Applied and Environmental Microbiology, 74(19), 5943–5947.CrossRefGoogle Scholar
  76. Sydow, A., Krieg, T., Mayer, F., Schrader, J., & Holtmann, D. (2014). Electroactive bacteria—Molecular mechanisms and genetic tools. Applied Microbiology and Biotechnology, 98(20), 8481–8495.Google Scholar
  77. Tartakovsky, B., Manuel, M. F., Wang, H., & Guiot, S. R. (2009). High rate membraneless microbial electrolysis cell for continuous hydrogen production. International Journal of Hydrogen Energy, 34(2), 672–677.CrossRefGoogle Scholar
  78. Torres, C. I. (2014). On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications. Current Opinion in Biotechnology, 27, 107–114.CrossRefGoogle Scholar
  79. van Eerten Jansen, M. C., ter Heijne, A., Buisman, C. J., & Hamelers, H. V. (2012). Microbial electrolysis cells for production of methane from CO2: Long term performance and perspectives. International Journal of Energy Research, 36(6), 809–819.CrossRefGoogle Scholar
  80. van Eerten-Jansen, M. C., ter Heijne, A., Grootscholten, T. I., Steinbusch, K. J., Sleutels, T. H., Hamelers, H. V., & Buisman, C. J. (2013). Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustainable Chemistry & Engineering, 1(5), 513–518.CrossRefGoogle Scholar
  81. Villano, M., Aulenta, F., Beccari, M., Majone, M., & Roma, I. T. (2010a). Microbial generation of H2 or CH4 coupled to wastewater treatment in bioelectrochemical systems. Chemical. Engineering, 20, 2–7.Google Scholar
  82. Villano, M., Aulenta, F., Ciucci, T., Giuliano, A., & Majone, M. (2010b). Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilicmethanogenic culture. Bioresource Technology, 101(9), 3085–3090.CrossRefGoogle Scholar
  83. Xu, J., Sheng, G. P., Luo, H. W., Li, W. W., Wang, L. F., & Yu, H. Q. (2012). Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Research, 46(6), 1817–1824.CrossRefGoogle Scholar
  84. Yong, Y. C., Yu, Y. Y., Zhang, X., & Song, H. (2014). Highly active bidirectional electron transfer by a self assembled electroactive reduced graphene oxide hybridized biofilm. Angewandte Chemie International Edition, 53(17), 4480–4483.CrossRefGoogle Scholar
  85. Zhang, Y., & Angelidaki, I. (2014). Microbial electrolysis cells turning to be versatile technology: Recent advances and future challenges. Water Research, 56, 11–25.CrossRefGoogle Scholar
  86. Zhang, G., Wang, K., Zhao, Q., Jiao, Y., & Lee, D. J. (2012). Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells. Bioresource Technology, 118, 249–256.CrossRefGoogle Scholar
  87. Zhang, T., Nie, H., Bain, T. S., Lu, H., Cui, M., Snoeyenbos-West, O. L., Franks, A. E., Nevin, K. P., Russell, T. P., & Lovley, D. R. (2013). Improved cathode materials for microbial electrosynthesis. Energy & Environmental Science, 6(1), 217–224.CrossRefGoogle Scholar
  88. Zhang, F., Liu, J., Ivanov, I., Hatzell, M. C., Yang, W., Ahn, Y., & Logan, B. E. (2014). Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems. Biotechnology and Bioengineering, 111(10), 1931–1939.CrossRefGoogle Scholar
  89. Zhen, G., Kobayashi, T., Lu, X., Kumar, G., & Xu, K. (2016). Biomethane recovery from Egeriadensa in a microbial electrolysis cell-assisted anaerobic system: Performance and stability assessment. Chemosphere, 149, 121–129.CrossRefGoogle Scholar

Copyright information

© Capital Publishing Company, New Delhi, India 2018

Authors and Affiliations

  1. 1.TERI UniversityNew DelhiIndia
  2. 2.University of CalgaryCalgaryCanada
  3. 3.New DelhiIndia

Personalised recommendations