Biophotovoltaics: Conversion of Light Energy to Bioelectricity Through Photosynthetic Microbial Fuel Cell Technology

  • Rashmi Chandra
  • S. Venkata Mohan
  • Parra-Saldivar Roberto
  • Bruce E. Ritmann
  • Raul Alexis Sanchez Cornejo


Solar radiation led into the planet earth by photosynthesis is the main energy basis for survival. Photosynthesis is a physico-chemical process where photosynthetic organism transform solar energy into chemical energy with simultaneous use of bioenergetic processes (Georgianna and Mayfield 2012; Strik et al. 2011). Photosynthetic microbial fuel cells (PhFCs) are newly established tools that harvest sun energy to yield electricity and has gained major attentiveness in applied and academic research due to its sustainable and renewable nature (Chandra et al. 2012; Venkata Mohan et al. 2014). PhFCs use plants or phototrophic microorganisms to trap sun light and use photo-bioelectrochemical system to produce bioelectricity (El Mekawy et al. 2014). This technology symbolizes a multi-disciplinary method to search for renewable energy. It represents the convergence for the life-sciences, chemical and physical science (McCormick et al. 2015; Xiao and He 2014). Microbial fuel cells (MFCs) are mainly focused towards anodic reaction with dark fermentation as microbial metabolic function. Analogous to dark fermentation, photosynthetic fuel cells (PhFC) or biophotovoltaic system (BPV) will also be functioned using photo synthetic bacteria (PSB) or algae/cyanobacteria based on their photosynthetic mechanism (oxygenic or anoxygenic) (Chandra et al. 2012; Rosenbaum et al. 2010a). Oxygenic photosynthesis based autotrophic PhFCs include diverse categories of MFC containing both heterotrophs and autotrophs (Venkata Mohan et al. 2010a, b, 2011) (Fig. 19.1). The current chapter has made an attempt to convey the present photosynthetic mechanism for PhFC application in understanding on the innate potential of photosynthetic mechanism.



The authors want to thank Director of Tecnológico de Monterrey Monterrey Mexico; CSIR-IICT, Hyderabad, India; and Arizona State University, Tempe, AZ, USA for their encouragement and support.


  1. Archer, M. D. (2002). Photovoltaics and photoelectrochemistry: Similarities and differences. Physica E: Low-dimensional Systems and Nanostructures, 14, 61–64.CrossRefGoogle Scholar
  2. Badawy, W. A. (2015). A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of Advanced Research, 6, 123–132.CrossRefGoogle Scholar
  3. Badawy, W. A., Elmeniawy, S. A., & Hafez, A. N. (2015). Improvement of the photovoltaic characteristics of industrially fabricated solar cells by chemical etching of the Si surface. Journal of Solar Energy Engineering, 137, 041007.Google Scholar
  4. Badura, A., Guschin, D., Kothe, T., Kopczak, M. J., Schuhmann, W., & Rogner, M. (2011). Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels. Energy & Environmental Science, 4, 2435–2440.Google Scholar
  5. Blankenship, R. E. (2016). Molecular evidence for the evolution of photosynthesis. Trends in Plant Science, 6, 4–6.CrossRefGoogle Scholar
  6. Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing micro-organisms that harvest energy from marine sediments. Science, 295, 483–485.Google Scholar
  7. Bond, D. R., Strycharz-glaven, S. M., Tender, L. M., & Torres, C. I. (2012). On E-transport through Geobacter biofilms. Chem Sus Chem, 5, 1099–1105.CrossRefGoogle Scholar
  8. Bretschger, O., Osterstock, J. B., Pinchak, W. E., Ishii, S., & Nelson, K. E. (2010). Microbial fuel cells and microbial ecology: Applications in ruminant health and production research. Microbial Ecology, 59, 415–427.CrossRefGoogle Scholar
  9. Chandra, R., Annie Modestra, J., & Venkata Mohan, S. (2015). Biophotovoltaic cell to harness bioelectricity from acidogenic wastewater associated with microbial community profiling. Fuel, 160, 502–512.Google Scholar
  10. Chandra, R., Sravan, J. S., Hemalatha, M., Butti, S. K., & Venkata Mohan, S. (2017). Photosynthetic synergism for sustained power production with microalgae and photobacteria in a biophotovoltaic cell. Energy and Fuels, 31, 7635–7644.
  11. Chandra, R., & Venkata Mohan, S. (2011). Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. International Journal of Hydrogen Energy, 36, 12211–12219.CrossRefGoogle Scholar
  12. Chandra, R., & Venkata Mohan, S. (2014). Enhanced bio-hydrogenesis by co-culturing photosynthetic bacteria with acidogenic process: Augmented dark-photo fermentative hybrid system to regulate volatile fatty acid inhibition. International Journal of Hydrogen Energy, 39, 7604–7615.CrossRefGoogle Scholar
  13. Chandra, R., Venkata Subhash, G., & Venkata Mohan, S. (2012). Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresource Technology, 109, 46–56.CrossRefGoogle Scholar
  14. Di Lorenzo, M., Thomson, A. R., Schneider, K., Cameron, P. J., & Ieropoulos, I. (2014). A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors & Bioelectronics, 62, 182–188.Google Scholar
  15. El Mekawy, A., Hegab, H. M., Vanbroekhoven, K., & Pant, D. (2014). Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renewable and Sustainable Energy Reviews, 39, 617–627.CrossRefGoogle Scholar
  16. Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488, 329–335.CrossRefGoogle Scholar
  17. Hamelers, H. V. M., Ter Heijne, A., Sleutels, T. H. J. A, Jeremiasse, A. W., Strik, D. P. B. T. B., & Buisman, C. J. N. (2010). New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology, 85, 1673–1685.Google Scholar
  18. Han, K., Yueh, P.-L., Qin, L.-J., Hsueh, C.-C., & Chen, B.-Y. (2015). Deciphering synergistic characteristics of microbial fuel cell-assisted dye decolorization. Bioresource Technology, 196, 746–751.Google Scholar
  19. Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101, 3541–3547.Google Scholar
  20. Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresource Technology, 104, 417–423.Google Scholar
  21. Helder, M., Strik, D. P. B. T. B., Timmers, R. A., Raes, S. M. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass and Bioenergy, 51, 1–7.Google Scholar
  22. Hubenova, Y., & Mitov, M. (2012). Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell. Bioelectrochemistry, 87, 185–191.CrossRefGoogle Scholar
  23. Ihssen, J., Braun, A., Faccio, G., Gajda-Schrantz, K., & Thony-Meyer, L. (2014). Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Current Protein & Peptide Science, 15, 374–384.CrossRefGoogle Scholar
  24. Kathiravan, A., & Renganathan, R. (2009). Photosensitization of colloidal TiO2 nanoparticles with phycocyanin pigment. Journal of Colloid and Interface Science, 335, 196–202.CrossRefGoogle Scholar
  25. Kim, B. H., Chang, I. S., Cheol Gil, G., Park, H. S., & Kim, H. J. (2007). Challenges in microbial fuel cell development and operation. Applied Microbiology and Biotechnology, 76, 485–494.Google Scholar
  26. Lovley, D. R. (2006). Bug juice: Harvesting electricity with microorganisms. Nature Reviews. Microbiology, 4, 497–508.CrossRefGoogle Scholar
  27. Luo, Y., Zhang, R., Liu, G., Li, J., Qin, B., Li, M., Chen, S. (2011) Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour. Technol. 102, 3827–32.Google Scholar
  28. Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular e- transfer. Proceedings of the National Academy of Sciences of the United States of America, 105, 3968–3973.Google Scholar
  29. McCormick, A. J., Bombelli, P., Bradley, R. W., Thorne, R., Wenzel, T., & Howe, C. J. (2015). Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy & Environmental Science, 8, 1092–1109.CrossRefGoogle Scholar
  30. Mohan, S. V., & Chandrasekhar, K. (2011). Self-induced bio-potential and graphite e-accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 102, 9532–9541.CrossRefGoogle Scholar
  31. Pandit, A. V., & Mahadevan, R. (2011). In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microbial Cell Factories, 10, 76.CrossRefGoogle Scholar
  32. Raschitor, A., Soreanu, G., Fernandez-Marchante, C. M., Lobato, J., Cañizares, P., Cretescu, I., & Rodrigo, M. A. (2015). Bioelectro-Claus processes using MFC technology: Influence of co-substrate. Bioresource Technology, 189, 94–98.Google Scholar
  33. Rosenbaum, M., He, Z., & Angenent, L. T. (2010). Light energy to bioelectricity: Photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21, 259–264.Google Scholar
  34. Schröder, U., Nießen, J., & Scholz, F. (2003). A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angewandte Chemie, International Edition, 42, 2880–2883.CrossRefGoogle Scholar
  35. Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29, 41–49.Google Scholar
  36. Suemori, Y., Nagata, M., Nakamura, Y., Nakagawa, K., Okuda, A., Inagaki, J., Shinohara, K., Ogawa, M., Iida, K., Dewa, T., Yamashita, K., Gardiner, A., Cogdell, R. J., & Nango, M. (2006). Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode. Photosynthesis Research, 90, 17–21.Google Scholar
  37. Timmers, R. A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2012). Characterization of the internal resistance of a plant microbial fuel cell. Electrochimica Acta, 72, 165–171.Google Scholar
  38. Tran, D. N., & Balkus, K. J. (2011). Perspective of recent progress in immobilization of Enzymes. ACS Catalysis, 1, 956–968.CrossRefGoogle Scholar
  39. Venkata Mohan, S., Mohanakrishna, G., & Sarma, P. N. (2008a). Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environmental Science & Technology, 42, 8088–8094.CrossRefGoogle Scholar
  40. Venkata Mohan, S., Mohanakrishna, G., Reddy, B. P., Saravanan, R., & Sarma, P. N. (2008b). Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochemical Engineering Journal, 39, 121–130.CrossRefGoogle Scholar
  41. Venkata Mohan, S., Mohanakrishna, G., Chiranjeevi, P., Peri, D., & Sarma, P. N. (2010). Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented distillery wastewater: Evaluation of long term performance. Bioresource Technology, 101, 3363–3370.CrossRefGoogle Scholar
  42. Venkata Mohan, S., Mohanakrishna, G., & Chiranjeevi, P. (2011). Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresource Technology, 102, 7036–7042.CrossRefGoogle Scholar
  43. Venkata Mohan, S., Srikanth, S., Chiranjeevi, P., Arora, S., & Chandra, R. (2014). Algal biocathode for in situ terminal e-acceptor (TEA) production: Synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresource Technology, 166, 566–574.CrossRefGoogle Scholar
  44. Venkata Subhash, G., Chandra, R., & Venkata Mohan, S. (2013). Microalgae mediated bio-electrocatalytic fuel cell facilitates bioelectricity generation through oxygenic photomixotrophic mechanism. Bioresource Technology, 136, 644–653.Google Scholar
  45. Wetser, K., Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157.CrossRefGoogle Scholar
  46. Wu, S., Li, H., Zhou, X., Liang, P., Zhang, X., Jiang, Y., & Huang, X. (2016). A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Research, 98, 396–403.Google Scholar
  47. Xiao, L., & He, Z. (2014). Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renewable and Sustainable Energy Reviews, 37, 550–559.CrossRefGoogle Scholar
  48. Zhang, Q., Saito, T., Cheng, S., Hickner, M. A., & Logan, B. E. (2010). Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology, 44, 1490–1495.Google Scholar
  49. Zhang, Q., Hu, J., & Lee, D.-J. (2016). Microbial fuel cells as pollutant treatment units: Research updates. Bioresource Technology, 217, 121–128.
  50. Zhang, Q., Ma, J., Qiu, G., Li, L., Geng, S., Hasi, E., Li, C., & Wang, G. (2012). Bioresource technology potential energy production from algae on marginal land in China. Original Research Article, 109, 252–260.Google Scholar
  51. Zhuang, K., Vemuri, G. N., & Mahadevan, R. (2011). Respiro-fermentation. Molecular Systems Biology, 7, 1–9.Google Scholar

Copyright information

© Capital Publishing Company, New Delhi, India 2018

Authors and Affiliations

  • Rashmi Chandra
    • 1
  • S. Venkata Mohan
    • 2
  • Parra-Saldivar Roberto
    • 1
  • Bruce E. Ritmann
    • 1
    • 3
  • Raul Alexis Sanchez Cornejo
    • 1
  1. 1.School of Engineering and ScienceTecnologico de MonterreyMonterreyMexico
  2. 2.Swette Center for Environmental BiotechnologyThe Biodesign Institute, Arizona State UniversityTempeUSA
  3. 3.Bioengineering and Environmental Sciences (BEES)CSIR-Indian Institute of Chemical Technology (CSIR-IICT)HyderabadIndia

Personalised recommendations