Skip to main content

Reactor Design for Bioelectrochemical Systems

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Bioelectrochemical systems (BES) are novel hybrid systems which are designed to generate renewable energy from the low cost substrate in a sustainable way. Microbial fuel cells (MFCs) are the well studied application of BES systems that generate electricity from the wide variety of organic components and wastewaters. MFC mechanism deals with the microbial oxidation of organic molecules for the production of electrons and protons. The MFC design helps to build the electrochemical gradient on anode and cathode which leads for the bioelectricity generation. As whole reactions of MFCs happen at mild environmental and operating conditions and using waste organics as the substrate, it is defined as the sustainable and alternative option for global energy needs and attracted worldwide researchers into this research area. Apart from MFC, BES has other applications such as microbial electrolysis cells (MECs) for biohydrogen production, microbial desalinations cells (MDCs) for water desalination, and microbial electrosynthesis cells (MEC) for value added products formation. All these applications are designed to perform efficiently under mild operational conditions. Specific strains of bacteria or specifically enriched microbial consortia are acting as the biocatalyst for the oxidation and reduction of BES. Detailed function of the biocatalyst has been discussed in the other chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi, M., Shimomura, T., Komatsu, M., Yakuwaa, H., & Miyaa, A. (2008). A novel mediator-polymer-modified anode for MFCs. Chemical Communications, 17, 2055–2057.

    Article  Google Scholar 

  • Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10, 2341–2353.

    Article  CAS  Google Scholar 

  • Baudler, A., Schmidt, I., Langner, M., Greiner, A., & Schröder, U. (2015). Does it have to be carbon? Metal anodes in MFCs and related bioelectrochemical systems. Energy and Environmental Science, 8, 2048–2055.

    Article  CAS  Google Scholar 

  • Butti, S. K., Velvizhi, G., Sulonen, M. L. K., Haavisto, J. M., Koroglu, E. O., Cetinkaya, A. Y., Singh, S., Arya, D., Modestra, J. A., Krishna, K. V., Verma, A., Ozkaya, B., Lakaniemi, A.-M., Puhakka, J. A., & Mohan, S. V. (2016). Microbial electro-chemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling. Renewable and Sustainable Energy Reviews, 53, 462–476.

    Article  CAS  Google Scholar 

  • Chen, W., Huang, Y.-X., Li, D.-B., Yu, H.-Q., & Yan, L. (2014). Preparation of a macroporous flexible three dimensional graphene sponge using an ice template as the anode material for microbial fuel cells. RSC Advances, 4, 21619–21624.

    Article  CAS  Google Scholar 

  • Ci, S., Wen, Z., Chen, J., & He, Z. (2012). Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for MFCs. Electrochemistry Communications, 14, 71–74.

    Article  CAS  Google Scholar 

  • Crittenden, S. R., Sund, C. J., & Sumner, J. J. (2006). Mediating electron transfer from bacteria. Langmuir, 22(23), 9473–9476.

    Article  CAS  Google Scholar 

  • Ding, C., Liu, H., Zhu, Y., Wan, M., & Jiang, L. (2012). Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy and Environmental Science, 5, 8517–8522.

    Article  CAS  Google Scholar 

  • Erbay, C., Yang, G., Figueiredo, P. D., Sadr, R., Yu, C., & Han, A. (2015). Three-dimensional porous carbon nanotube sponges for high-performance anodes of MFCs. Journal of Power Sources, 298, 177–183.

    Article  CAS  Google Scholar 

  • Feng, C., Ma, L., Li, F., Mai, H., Lang, X., & Fan, S. (2010). A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of MFCs. Biosensors and Bioelectronics, 25, 1516–1520.

    Article  CAS  Google Scholar 

  • Filip, J., & Tkac, J. (2014). Is graphene worth using in biofuel cells? Electrochimica Acta, 136, 340–354.

    Article  CAS  Google Scholar 

  • Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied and Environmental Microbiology, 77, 1541–1547.

    Article  CAS  Google Scholar 

  • Guo, W., Pi, Y., Song, H., Tang, W., & Sun, J. (2012). Layer-by-layer assembled gold nanoparticles modified anode and its application in MFCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 105–111.

    Article  CAS  Google Scholar 

  • Guo, K., Soeriyadi, A. H., Feng, H., Prévoteau, A., Patil, S. A., Gooding, J. J., & Rabaey, K. (2015). Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems. Bioresource Technology, 195, 46–50.

    Article  CAS  Google Scholar 

  • He, Z., Liu, J., Qiao, Y., Li, C. M., & Yang Tan, T. T. (2012). Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance MFC. Nano Letters, 12, 4738–4741.

    Article  CAS  Google Scholar 

  • Ieropoulos, I., Greenman, J., & Melhuish, C. (2003). Imitating metabolism: Energy autonomy in biologically inspired robotics. In Proceedings of second international symposium on imitation in animals and artifacts, SSAISB, Aberystwyth.

    Google Scholar 

  • Ieropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: Stack configuration and scalability. International Journal of Energy Research, 32(13), 1228–1240.

    Google Scholar 

  • Jiang, X., Hu, J., Lieber, A. M., Jackan, C. S., Biffinger, J. C., Fitzgerald, L. A., Ringeisen, B. R., & Lieber, C. M. (2014). Nanoparticle facilitated extracellular electron transfer in MFCs. Nano Letters, 14, 6737–6742.

    Article  CAS  Google Scholar 

  • Jingmei, P., An, J., Ha, P. T., Kim, T., Jang, J. K., Moon, H., & Chang, I. S. (2013). Power density enhancement of anion-exchange membrane-installed MFC under bicarbonate-buffered cathode condition. Journal of Microbiology and Biotechnology, 23, 36–39.

    Article  Google Scholar 

  • Jung, D. H., Lee, C. H., Kim, C. S., & Shin, D. R. (1998). Performance of a direct methanol polymer electrolyte fuel cell. Journal of Power Sources, 71, 169–173.

    Article  Google Scholar 

  • Kalathil, S., & Pant, D. (2016). Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems. RSC Advances, 6, 30582–30597.

    Article  CAS  Google Scholar 

  • Kalathil, S., Lee, J., & Cho, M. H. (2011). Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chemistry, 13, 1482–1485.

    Article  CAS  Google Scholar 

  • Kalathil, S., Nguyen, V. H., Shim, J.-J., Khan, M. M., Lee, J., & Cho, M. H. (2013). Enhanced performance of a MFC using CNT/MnO2 nanocomposite as a bioanode material. Journal of Nanoscience and Nanotechnology, 13, 7712–7716.

    Article  CAS  Google Scholar 

  • Katuri, K., Ferrer, M. L., Gutiérrez, M. C., Jiménez, R., del Monte, F., & Leech, D. (2011). Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy & Environmental Science, 4(10), 4201–4210.

    Google Scholar 

  • Ketep, S. F., Bergel, A., Calmet, A., & Erable, B. (2014). Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems. Energy and Environmental Science, 7, 1633–1637.

    Article  CAS  Google Scholar 

  • Kim, J. R., Cheng, S., Oh, S.-E., & Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in MFCs. Environmental Science and Technology, 41, 1004–1009.

    Article  CAS  Google Scholar 

  • Kim, B. H., Lim, S. S., Wan Daud, W. R., Gadd, G. M., & Chang, I. S. (2015). The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresource Technology, 190, 395–401.

    Article  CAS  Google Scholar 

  • Leong, J. X., Wan Daud, W. R., Ghasemi, M., Liew, K. B., & Ismail, M. (2013). Ion exchange membranes as separators in MFCs for bioenergy conversion: A comprehensive review. Renewable and Sustainable Energy Reviews, 28, 575–587.

    Article  CAS  Google Scholar 

  • Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in MFCs. Biosensors and Bioelectronics, 26, 3000–3004.

    Article  CAS  Google Scholar 

  • Liu, J., Qiao, Y., Guo, C. X., Lim, S., Song, H., & Li, C. M. (2012). Graphene/carbon cloth anode for high-performance mediatorless MFCs. Bioresource Technology, 114, 275–280.

    Article  CAS  Google Scholar 

  • Liu, X.-W., Chen, J.-J., Huang, Y.-X., Sun, X.-F., Sheng, G.-P., Li, D.-B., Xiong, L., Zhnag, Y.-Y., Zhao, F., & Yu, H.-Q. (2014a). Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Scientific Reports, 4, 3732.

    Article  Google Scholar 

  • Liu, X.-W., Huang, Y.-X., Sun, X.-F., Sheng, G.-P., Zhao, F., Wang, S.-G., & Yu, H. Q. (2014b). Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Applied Materials & Interfaces, 6, 8158–8164.

    Article  CAS  Google Scholar 

  • Martin, E., Tartakovsky, B., & Savadogo, O. (2011). Cathode materials evaluation in MFCs: A comparison of carbon, Mn2O3, Fe2O3 and platinum materials. Electrochimica Acta, 58, 58–66.

    Article  CAS  Google Scholar 

  • Melhuish, C., Ieropoulos, I., Greenman, J., & Horsfield, I. (2006). Energetically autonomous robots: Food for thought. Autonomous Robots, 21, 187–198. https://doi.org/10.1007/ s10514-006-6574-5.

    Article  Google Scholar 

  • Mink, J. E., & Hussain, M. M. (2013). Sustainable design of high-performance microsized MFC with carbon nanotube anode and air cathode. ACS Nano, 7, 6921–6927.

    Article  CAS  Google Scholar 

  • Mink, J. E., Rojas, J. P., Logan, B. E., & Hussain, M. M. (2012). Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) MFC. Nano Letters, 12, 791–795.

    Article  CAS  Google Scholar 

  • Nguyen, T.-H., Yu, Y.-Y., Wang, X., Wang, J.-Y., & Song, H. (2013). A 3D mesoporous polysulfone-carbon nanotube anode for enhanced bioelectricity output in MFCs. Chemical Communications, 49, 10754–10756.

    Article  CAS  Google Scholar 

  • Pocaznoi, D., Calmet, A., Etcheverry, L., Erable, B., & Bergel, A. (2012). Stainless steel is a promising electrode material for anodes of MFCs. Energy and Environmental Science, 5, 9645–9652.

    Article  CAS  Google Scholar 

  • Qiao, Y., Bao, S.-J., Li, C. M., Cui, X.-Q., Lu, Z.-S., & Guo, J. (2007). Nanostructured polyaniline/titanium dioxide composite anode for MFCs. ACS Nano, 2, 113–119.

    Article  Google Scholar 

  • Rabaey, K., Boon, N., Hofte, M., & Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science and Technology, 39, 3401–3408.

    Article  CAS  Google Scholar 

  • Raghavulu, S. V., Mohan, S. V., Reddy, M. V., Mohanakrishna, G., & Sarma, P. N. (2009). Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. International Journal of Hydrogen Energy, 34(17), 7547–7554.

    Google Scholar 

  • Ren, H., Tian, H., Gardner, C. L., Ren, T.-L., & Chae, J. (2016). A miniaturized MFC with three dimensional graphene macroporous scaffold anode demonstrating a record power density of over 10,000 W m−3. Nanoscale, 8, 3539–3547.

    Article  CAS  Google Scholar 

  • Santoro, C., Serov, A., Narvaez Villarrubia, C. W., Stariha, S., Babanova, S., Artyushkova, K., Schuler, A. J., & Atanassov, P. (2015). High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for MFC application. Scientific Reports, 5, 16596.

    Article  Google Scholar 

  • Sun, M., Zhang, F., Tong, Z.-H., Sheng, G.-P., Chen, Y.-Z., Zhao, Y., Chen, Y.-P., Zhou, S.-Y., Liu, G., Tian, Y.-C., & Yu, H.-Q. (2010). A gold-sputtered carbon paper as an anode for improved electricity generation from an MFC inoculated with Shewanellaoneidensis MR-1. Biosensors and Bioelectronics, 26, 338–343.

    Article  CAS  Google Scholar 

  • Tang, X., Li, H., Du, Z., Wang, W., & Ng, H. Y. (2015). Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for MFCs. RSC Advances, 5, 50968–50974.

    Article  CAS  Google Scholar 

  • Tursun, H., Liu, R., Li, J., Abro, R., Wang, X., Gao, Y., & Li, Y. (2016). Carbon material optimized biocathode for improving MFC performance. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00006.

  • Venkata Mohan, S., Saravanan, R., Raghavulu, S. V., Mohanakrishna, G., & Sarma, P. N. (2008). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresource Technology, 99(3), 596–603.

    Google Scholar 

  • Wilkinson, S. (2000). ‘Gastronome’A pioneering food powered mobile robot. Proceedings of the international conference on robotics and applications. Honolulu, Hawaii, 14–16 August 2000, IASTED-2000.

    Google Scholar 

  • Wu, X., Zhao, F., Rahunen, N., Varcoe, J. R., Rossa, C. A., Thumser, A. E., & Slade, R. C. T. (2011). A role for microbial palladium nanoparticles in extracellular electron transfer. Microbial Direct Electrochemistry. Wiley Interscience.

    Google Scholar 

  • Xie, X., Hu, L., Pasta, M., Wells, G. F., Kong, D., Criddle, C. S., & Cui, Y. (2011). Three-dimensional carbon nanotube-textile anode for high-performance MFCs. Nano Letters, 11, 291–296.

    Article  CAS  Google Scholar 

  • Xie, X., Yu, G., Liu, N., Bao, Z., Criddle, C. S., & Cui, Y. (2012). Graphene-sponges as high-performance low-cost anodes for MFCs. Energy and Environmental Science, 5, 6862–6866.

    Article  CAS  Google Scholar 

  • Xie, X., Criddle, C., & Cui, Y. (2015). Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy and Environmental Science, 8, 3418–3441.

    Article  CAS  Google Scholar 

  • Yamashita, T., Ishida, M., Asakawa, S., Kanamori, H., Sasaki, H., Ogino, A., Katayose, Y., Hatta, T., & Yokoyama, H. (2016). Enhanced electrical power generation using flame-oxidized stainless steel anode in MFCs and the anodic community structure. Biotechnology for Biofuels, 9, 62.

    Article  Google Scholar 

  • Yan, F.-F., Her, Y.-R., Wu, C., Cheng, Y.-Y., Li, W.-W., & Yu, H. Q. (2014). Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanellaoneidensis MR-1. Environmental Science and Technology, 1, 128–132.

    CAS  Google Scholar 

  • Yazdi, A. A., D’Angelo, L., Omer, N., Windiasti, G., Lu, X., & Xu, J. (2016). Carbon nanotube modification of MFC electrodes. Biosensors and Bioelectronics. https://doi.org/10.1016/j.bios.2016.05.033.

  • Yuan, H., & He, Z. (2015). Graphene-modified electrodes for enhancing the performance of MFCs. Nanoscale, 7, 7022–7029.

    Article  CAS  Google Scholar 

  • Zhang, Y., Mo, G., Li, X., Zhang, W., Zhang, J., Ye, J., Huang, X., & Yu, C. (2011). A graphene modified anode to improve the performance of MFCs. Journal of Power Sources, 196, 5402–5407.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2012). Bio-cathode materials evaluation in MFCs: A comparison of graphite felt, carbon paper and stainless steel mesh materials. International Journal of Hydrogen Energy, 37, 16935–16942.

    Article  CAS  Google Scholar 

  • Zhao, C.-e., Wu, J., Kjelleberg, S., Chey Loo, J. S., & Zhang, Q. (2015). Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in MFCs. Small, 11, 3440–3443.

    Article  CAS  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in MFCs. Journal of Power Sources, 196, 4427–4435.

    Article  CAS  Google Scholar 

  • Zhou, X., Chen, X., Li, H., Xiong, J., Li, X., & Li, W. (2016). Surface oxygen-rich titanium as anode for high performance MFC. Electrochimica Acta. https://doi.org/10.1016/j.electacta.2016.05.103.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanakrishna, G., Kalathil, S., Pant, D. (2018). Reactor Design for Bioelectrochemical Systems. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_11

Download citation

Publish with us

Policies and ethics