Skip to main content

Target-Dependent Sentiment Analysis of Tweets Using Bidirectional Gated Recurrent Neural Networks

  • Chapter
  • First Online:
Advances in Hybridization of Intelligent Methods

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 85))

Abstract

The task of target-dependent sentiment analysis aims to identify the sentiment polarity towards a certain target in a given text. All the existing models of this task assume that the target is known. This fact has motivated us to develop an end-to-end target-dependent sentiment analysis system. To the extent of our knowledge, this is the first system that identifies and extract the target of the tweets. The proposed system is composed of two main steps. First, the targets of the tweet to be analysed are extracted. Afterwards, the system identifies the polarities of the tweet towards each extracted target. We have evaluated the effectiveness of the proposed model on a benchmark dataset from Twitter. The experiments show that our proposed system outperforms the state-of-the-are methods for target-dependent sentiment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  2. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014). arXiv:1406.1078

  3. Dong, L., Wei, F., Tan, C., Tang, D., Zhou, M., Xu, K.: Adaptive recursive neural network for target-dependent twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 49–54. Association for Computational Linguistics (2014)

    Google Scholar 

  4. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)

    Article  Google Scholar 

  5. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649, May 2013

    Google Scholar 

  6. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016

    Google Scholar 

  8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:1207.0580

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Jabreel, M., Moreno, A.: Sentirich: sentiment analysis of tweets based on a rich set of features. In: Artificial Intelligence Research and Development—Proceedings of the 19th International Conference of the Catalan Association for Artificial Intelligence, Barcelona, Catalonia, Spain, 19–21 Oct 2016, pp. 137–146 (2016)

    Google Scholar 

  11. Jabreel, M., Moreno, A., Huertas, A.: Do local residents and visitors express the same sentiments on destinations through social media? In: Information and Communication Technologies in Tourism 2017, pp. 655–668. Springer (2017)

    Google Scholar 

  12. Jebbara, S., Cimiano, P.: Aspect-based sentiment analysis using a two-step neural network architecture. In: Semantic Web Evaluation Challenge, pp. 153–167. Springer (2016)

    Google Scholar 

  13. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 151–160. Association for Computational Linguistics (2011)

    Google Scholar 

  14. Kessler, J.S., Nicolov, N.: Targeting sentiment expressions through supervised ranking of linguistic configurations. In: ICWSM (2009)

    Google Scholar 

  15. Kim, Y.: Convolutional neural networks for sentence classification (2014). arXiv:1408.5882

  16. Lafferty, J., McCallum, A., Pereira, F., et al.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML, vol. 1, pp. 282–289 (2001)

    Google Scholar 

  17. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition (2016). arXiv:1603.01360

  18. Ling, W., Dyer, C., Black, A.W., Trancoso, I., Fernandez, R., Amir, S., Marujo, L., Luis, T.: Finding function in form: compositional character models for open vocabulary word representation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1520–1530, Lisbon, Portugal, Sept 2015. Association for Computational Linguistics

    Google Scholar 

  19. Liu, B.: Opinion mining and sentiment analysis. In: Web Data Mining, pp. 459–526. Springer (2011)

    Google Scholar 

  20. Liu, B.: Sentiment analysis and opinion mining. In: Synthesis lectures on Human Language Technologies, vol. 5, no. 1, pp. 1–167 (2012)

    Google Scholar 

  21. Liu, Q., Gao, Z., Liu, B., Zhang, Y.: Automated rule selection for aspect extraction in opinion mining. In: IJCAI, pp. 1291–1297 (2015)

    Google Scholar 

  22. Liu, Q., Gao, Z., Liu, B., Zhang, Y.: Automated rule selection for opinion target extraction. Knowl.-Based Syst. 104, 74–88 (2016)

    Article  Google Scholar 

  23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv:1301.3781

  24. Mohammad, S., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of the Seventh International Workshop on Semantic Evaluation Exercises (SemEval-2013), Atlanta, Georgia, USA, June 2013

    Google Scholar 

  25. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  26. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, EMNLP’02, vol. 10, pp. 79–86, Stroudsburg, PA, USA. Association for Computational Linguistics (2002)

    Google Scholar 

  27. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  28. Perikos, I., Hatzilygeroudis, I.: Recognizing emotions in text using ensemble of classifiers. Eng. Appl. Artif. Intell. 51, 191–201 (2016)

    Article  Google Scholar 

  29. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning, pp. 147–155. Association for Computational Linguistics (2009)

    Google Scholar 

  30. Sang, E.F., Veenstra, J.: Representing text chunks. In: Proceedings of the Ninth Conference on European Chapter of the Association for Computational Linguistics, pp. 173–179. Association for Computational Linguistics (1999)

    Google Scholar 

  31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Sun, Y., Lin, L., Tang, D., Yang, N., Ji, Z., Wang, X.: Modeling mention, context and entity with neural networks for entity disambiguation. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 1333–1339. AAAI Press (2015)

    Google Scholar 

  33. Tang, D., Qin, B., Feng, X., Liu, T., Target-dependent sentiment classification with long short term memory (2015). arXiv:1512.01100

  34. Toh, Z., Su, J.: Nlangp at semeval-2016 task 5: improving aspect based sentiment analysis using neural network features. In: Proceedings of SemEval, pp. 282–288 (2016)

    Google Scholar 

  35. Vo, D.-T., Zhang, Y.: Target-dependent twitter sentiment classification with rich automatic features. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 1347–1353 (2015)

    Google Scholar 

  36. Zhang, M., Zhang, Y., Vo, D.-T.: Gated neural networks for targeted sentiment analysis. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA, pp. 3087–3093. Association for the Advancement of Artificial Intelligence (2016)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Univ. Rovira i Virgili through a Martí i Franqués Ph.D. grant, the assistant/teaching grant for the Department of Computer Engineering and Mathematics and the Research Support Funds 2016PFR-URV-B2-60.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Jabreel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jabreel, M., Hassan, F., Moreno, A. (2018). Target-Dependent Sentiment Analysis of Tweets Using Bidirectional Gated Recurrent Neural Networks. In: Hatzilygeroudis, I., Palade, V. (eds) Advances in Hybridization of Intelligent Methods. Smart Innovation, Systems and Technologies, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-319-66790-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66790-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66789-8

  • Online ISBN: 978-3-319-66790-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics