General Considerations for Neurointerventional Procedures

  • Mark R. Harrigan
  • John P. Deveikis
Part of the Contemporary Medical Imaging book series (CMI)


This chapter is a vade mecum (i.e., an essential guide) for neurointerventionalists, covering fundamental aspects of neurointerventional procedures, including pre-procedural preparation, vascular access, antithrombotic management, intervention phase, provocative testing procedures, intra-arterial chemotherapy, post-procedural care, and complication management and avoidance. The Appendix discusses the neurointerventional suite.


Neurointerventional procedures Arterial access Guide catheters Intermediate catheters Microcatheters Pediatric vascular access Antithrombotic therapy Guidewires Microcatheter technique Provocative testing Balloon test occlusion Wada test Intra-arterial chemotherapy Complications Neuroangiography suite 


  1. 1.
    Mueller C, Buerkle G, Buettner HJ, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162:329–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Manual on Contrast Media Version 10. 5.0 ed. Reston, VA: American College of Radiology; 2010.Google Scholar
  4. 4.
    Forster C, Kahles T, Kietz S, Drenckhahn D. Dexamethasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND. J Physiol. 2007;580:937–49.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tuor UI, Simone CS, Barks JD, Post M. Dexamethasone prevents cerebral infarction without affecting cerebral blood flow in neonatal rats. Stroke. 1993;24:452–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Zausinger S, Westermaier T, Plesnila N, Steiger HJ, Schmid-Elsaesser R. Neuroprotection in transient focal cerebral ischemia by combination drug therapy and mild hypothermia: comparison with customary therapeutic regimen. Stroke. 2003;34:1526–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsubota S, Adachi N, Chen J, Yorozuya T, Nagaro T, Arai T. Dexamethasone changes brain monoamine metabolism and aggravates ischemic neuronal damage in rats. Anesthesiology. 1999;90:515–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Koide T, Wieloch TW, Siesjo BK. Chronic dexamethasone pretreatment aggravates ischemic neuronal necrosis. J Cereb Blood Flow Metab. 1986;6:395–404.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosovsky MA, Rusinek H, Berenstein A, Basak S, Setton A, Nelson PK. High-dose administration of nonionic contrast media: a retrospective review. Radiology. 1996;200:119–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Kjonniksen I, Andersen BM, Sondenaa VG, Segadal L. Preoperative hair removal—a systematic literature review. AORN J. 2002;75:928–38. 40PubMedCrossRefGoogle Scholar
  11. 11.
    Binning MJ, Yashar P, Orion D, et al. Use of the outreach distal access catheter for microcatheter stabilization during intracranial arteriovenous malformation embolization. AJNR Am J Neuroradiol. 2012;33(9):E117–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Said MM, Rais-Bahrami K. Umbilical artery catheterization. In: MacDonald MG, editor. Atlas of procedures in neonatology. Philadelphia: Lippincott, Williams, and Wilkins; 2013. p. 156–72.Google Scholar
  13. 13.
    He L, Ladner TR, Pruthi S, et al. Rule of 5: angiographic diameters of cervicocerebral arteries in children and compatibility with adult neurointerventional devices. J Neurointerv Surg. 2016;8:1067–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Peeling L, Fiorella D. Balloon-assisted guide catheter positioning to overcome extreme cervical carotid tortuosity: technique and case experience. J Neurointerv Surg. 2014;6:129–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Mubarak N, Vitek JJ, Iyer SS, New G, Roubin GS. Carotid stenting with distal-balloon protection via the transbrachial approach. J Endovasc Ther. 2001;8:571–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Bendok BR, Przybylo JH, Parkinson R, Hu Y, Awad IA, Batjer HH. Neuroendovascular interventions for intracranial posterior circulation disease via the transradial approach: technical case report. Neurosurgery. 2005;56:E626; discussion E.CrossRefGoogle Scholar
  17. 17.
    Yoo BS, Yoon J, Ko JY, et al. Anatomical consideration of the radial artery for transradial coronary procedures: arterial diameter, branching anomaly and vessel tortuosity. Int J Cardiol. 2005;101:421–7.PubMedCrossRefGoogle Scholar
  18. 18.
    McIvor J, Rhymer JC. 245 transaxillary arteriograms in arteriopathic patients: success rate and complications. Clin Radiol. 1992;45:390–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Ross IB, Luzardo GD. Direct access to the carotid circulation by cut down for endovascular neuro-interventions. Surg Neurol. 2006;65:207–11; discussion 11.PubMedCrossRefGoogle Scholar
  20. 20.
    Nii K, Kazekawa K, Onizuka M, et al. Direct carotid puncture for the endovascular treatment of anterior circulation aneurysms. AJNR Am J Neuroradiol. 2006;27:1502–4.PubMedGoogle Scholar
  21. 21.
    Friedman JA, Nichols DA, Meyer FB, et al. Guglielmi detachable coil treatment of ruptured saccular cerebral aneurysms: retrospective review of a 10-year single-center experience. AJNR Am J Neuroradiol. 2003;24:526–33.PubMedGoogle Scholar
  22. 22.
    Saw J, Bajzer C, Casserly IP, et al. Evaluating the optimal activated clotting time during carotid artery stenting. Am J Cardiol. 2006;97:1657–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Castellan L, Causin F, Danieli D, Perini S. Carotid stenting with filter protection. Correlation of ACT values with angiographic and histopathologic findings. J Neuroradiol. 2003;30:103–8.PubMedGoogle Scholar
  24. 24.
    Matthai WH Jr. Use of argatroban during percutaneous coronary interventions in patients with heparin-induced thrombocytopenia. Semin Thromb Hemost. 1999;25(Suppl 1):57–60.PubMedGoogle Scholar
  25. 25.
    Harrigan MR, Levy EI, Bendok BR, Hopkins LN. Bivalirudin for endovascular intervention in acute ischemic stroke: case report. Neurosurgery. 2004;54:218–22; discussion 22–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Clayton SB, Acsell JR, Crumbley AJ 3rd, Uber WE. Cardiopulmonary bypass with bivalirudin in type II heparin-induced thrombocytopenia. Ann Thorac Surg. 2004;78:2167–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Keeling D, Davidson S, Watson H. The management of heparin-induced thrombocytopenia. Br J Haematol. 2006;133:259–69.PubMedCrossRefGoogle Scholar
  28. 28.
    Steinhubl SR, Berger PB, Mann JT 3rd, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002;288:2411–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Yamada NK, Cross DT 3rd, Pilgram TK, Moran CJ, Derdeyn CP, Dacey RG Jr. Effect of antiplatelet therapy on thromboembolic complications of elective coil embolization of cerebral aneurysms. AJNR Am J Neuroradiol. 2007;28:1778–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang HS, Han MH, Kwon BJ, et al. Is clopidogrel premedication useful to reduce thromboembolic events during coil embolization for unruptured intracranial aneurysms? Neurosurgery. 2010;67:1371–6; discussion 6.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang XD, Wu HT, Zhu J, He ZH, Chai WN, Sun XC. Delayed intracranial hemorrhage associated with antiplatelet therapy in stent-assisted coil embolized cerebral aneurysms. Acta Neurochir Suppl. 2011;110:133–9.Google Scholar
  32. 32.
    Siller-Matula JM, Huber K, Christ G, et al. Impact of clopidogrel loading dose on clinical outcome in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Heart. 2011;97:98–105.PubMedCrossRefGoogle Scholar
  33. 33.
    Mangiacapra F, Muller O, Ntalianis A, et al. Comparison of 600 versus 300-mg Clopidogrel loading dose in patients with ST-segment elevation myocardial infarction undergoing primary coronary angioplasty. Am J Cardiol. 2010;106:1208–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Roe MT, Armstrong PW, Fox KA, et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med. 2012;367:1297–309.PubMedCrossRefGoogle Scholar
  35. 35.
    Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Stetler WR, Chaudhary N, Thompson BG, Gemmete JJ, Maher CO, Pandey AS. Prasugrel is effective and safe for neurointerventional procedures. J Neurointerv Surg. 2013;5:332–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Akbari SH, Reynolds MR, Kadkhodayan Y, Cross DT 3rd, Moran CJ. Hemorrhagic complications after prasugrel (Effient) therapy for vascular neurointerventional procedures. J Neurointerv Surg. 2013;5:337–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Hanel RA, et al. Safety and efficacy of ticagrelor for neuroendovascular procedures. A single center initial experience. J Neurointerv Surg. 2014;6(4):320–2.PubMedCrossRefGoogle Scholar
  40. 40.
    Schleinitz MD, Olkin I, Heidenreich PA. Cilostazol, clopidogrel or ticlopidine to prevent sub-acute stent thrombosis: a meta-analysis of randomized trials. Am Heart J. 2004;148:990–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Bennett CL, Weinberg PD, Rozenberg-Ben-Dror K, Yarnold PR, Kwaan HC, Green D. Thrombotic thrombocytopenic purpura associated with ticlopidine. A review of 60 cases. Ann Intern Med. 1998;128:541–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Morrow DA, Braunwald E, Bonaca MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Gruberg L, Beyar R. Optimized combination of antiplatelet treatment and anticoagulation for percutaneous coronary intervention: the final word is not out yet! [letter; comment.]. J Invasive Cardiol. 2002;14:251–3.PubMedGoogle Scholar
  44. 44.
    Yi HJ, Gupta R, Jovin TG, et al. Initial experience with the use of intravenous eptifibatide bolus during endovascular treatment of intracranial aneurysms. AJNR Am J Neuroradiol. 2006;27:1856–60.PubMedGoogle Scholar
  45. 45.
    Ries T, Siemonsen S, Grzyska U, Zeumer H, Fiehler J. Abciximab is a safe rescue therapy in thromboembolic events complicating cerebral aneurysm coil embolization: single center experience in 42 cases and review of the literature. Stroke. 2009;40:1750–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Song JK, Niimi Y, Fernandez PM, et al. Thrombus formation during intracranial aneurysm coil placement: treatment with intra-arterial Abciximab. AJNR Am J Neuroradiol. 2004;25:1147–53.PubMedGoogle Scholar
  47. 47.
    Steinhubl SR, Talley JD, Braden GA, et al. Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation. 2001;103:2572–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Company Ma. Integrelin prescribing information. 1998.Google Scholar
  49. 49.
    Bruening R, Mueller-Schunk S, Morhard D, et al. Intraprocedural thrombus formation during coil placement in ruptured intracranial aneurysms: treatment with systemic application of the glycoprotein IIb/IIIa antagonist tirofiban. AJNR Am J Neuroradiol. 2006;27:1326–31.PubMedGoogle Scholar
  50. 50.
    McClellan KJ, Goa KL. Tirofiban. A review of its use in acute coronary syndromes. Drugs. 1998;56:1067–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Fontana P, Dupont A, Gandrille S, et al. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation. 2003;108:989–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Farid NA, Kurihara A, Wrighton SA. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol. 2010;50:126–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360:363–75.PubMedCrossRefGoogle Scholar
  54. 54.
    Taubert D, von Beckerath N, Grimberg G, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80:486–501.PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson CD, Biffi A, Greenberg SM, Rosand J. Personalized approaches to clopidogrel therapy: are we there yet? Stroke. 2010;41:2997–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ellis KJ, Stouffer GA, McLeod HL, Lee CR. Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations. Pharmacogenomics. 2009;10:1799–817.PubMedCrossRefGoogle Scholar
  57. 57.
    Hulot JS, Bura A, Villard E, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244.PubMedCrossRefGoogle Scholar
  58. 58.
    Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360:354–62.PubMedCrossRefGoogle Scholar
  59. 59.
    Sofi F, Giusti B, Marcucci R, Gori AM, Abbate R, Gensini GF. Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J. 2011;11:199–206.PubMedCrossRefGoogle Scholar
  60. 60.
    Administration USFaD. FDA drug safety communication: reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. Rockville, MD; 2010.Google Scholar
  61. 61.
    Lau WC, Waskell LA, Watkins PB, et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction. Circulation. 2003;107:32–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Nguyen T, Frishman WH, Nawarskas J, Lerner RG. Variability of response to clopidogrel: possible mechanisms and clinical implications. Cardiol Rev. 2006;14:136–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Lee DH, Arat A, Morsi H, Shaltoni H, Harris JR, Mawad ME. Dual antiplatelet therapy monitoring for neurointerventional procedures using a point-of-care platelet function test: a single-center experience. AJNR Am J Neuroradiol. 2008;29:1389–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Feher G, Koltai K, Alkonyi B, et al. Clopidogrel resistance: role of body mass and concomitant medications. Int J Cardiol. 2007;120:188–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Soffer D, Moussa I, Harjai KJ, et al. Impact of angina class on inhibition of platelet aggregation following clopidogrel loading in patients undergoing coronary intervention: do we need more aggressive dosing regimens in unstable angina? Catheter Cardiovasc Interv. 2003;59:21–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Qureshi AI, Luft AR, Sharma M, Guterman LR, Hopkins LN. Prevention and treatment of thromboembolic and ischemic complications associated with endovascular procedures: part II—clinical aspects and recommendations. Neurosurgery. 2000;46:1360–75; discussion 75–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Seidel H, Rahman MM, Scharf RE. Monitoring of antiplatelet therapy. Current limitations, challenges, and perspectives. Hamostaseologie. 2011;31:41–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Bonello L, Tantry US, Marcucci R, et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol. 2010;56:919–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Adeeb N, Griessenauer CJ, Foreman PM, et al. Use of platelet function testing before pipeline embolization device placement: a multicenter cohort study. Stroke. 2017;48:1322–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Müller-Schunk S, Linn J, Peters N, et al. Monitoring of clopidogrel-related platelet inhibition: correlation of nonresponse with clinical outcome in supra-aortic stenting. AJNR Am J Neuroradiol. 2008;29:786–91.PubMedCrossRefGoogle Scholar
  71. 71.
    Prabhakaran S, Wells KR, Lee VH, Flaherty CA, Lopes DK. Prevalence and risk factors for aspirin and clopidogrel resistance in cerebrovascular stenting. AJNR Am J Neuroradiol. 2008;29:281–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Kang H-S, Kwon BJ, Kim JE, Han MH. Preinterventional Clopidogrel response variability for coil embolization of intracranial aneurysms: clinical implications. AJNR Am J Neuroradiol. 2010;31:1206–10.PubMedCrossRefGoogle Scholar
  73. 73.
    Pandya DJ, Fitzsimmons BF, Wolfe TJ, et al. Measurement of antiplatelet inhibition during neurointerventional procedures: the effect of antithrombotic duration and loading dose. J Neuroimaging. 2010;20:64–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Alberts MJ. Platelet function testing for aspirin resistance is reasonable to do: yes! Stroke. 2010;41:2400–1.PubMedCrossRefGoogle Scholar
  75. 75.
    Eikelboom JW, Emery J, Hankey GJ. The use of platelet function assays may help to determine appropriate antiplatelet treatment options in a patient with recurrent stroke on baby aspirin: against. Stroke. 2010;41:2398–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Selim MH, Molina CA. Platelet function assays in stroke management: more study is needed. Stroke. 2010;41:2396–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Järemo P, Lindahl TL, Fransson SG, Richter A. Individual variations of platelet inhibition after loading doses of clopidogrel. J Intern Med. 2002;252:233–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Skukalek SL, Winkler AM, Kang J, et al. Effect of antiplatelet therapy and platelet function testing on hemorrhagic and thrombotic complications in patients with cerebral aneurysms treated with the pipeline embolization device: a review and meta-analysis. J Neurointerv Surg. 2016;8:58–65.PubMedCrossRefGoogle Scholar
  79. 79.
    Bhatt DL, Scheiman J, Abraham NS, et al. ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation task force on clinical expert consensus documents. Circulation. 2008;118:1894–909.PubMedCrossRefGoogle Scholar
  80. 80.
    Ogilvie BW, Yerino P, Kazmi F, et al. The proton pump inhibitor, omeprazole, but not Lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19: implications for Coadministration with Clopidogrel. Drug Metab Dispos. 2011;39(11):2020–33.PubMedCrossRefGoogle Scholar
  81. 81.
    O’Donoghue ML, Braunwald E, Antman EM, et al. Pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or without a proton-pump inhibitor: an analysis of two randomised trials. Lancet. 2009;374:989–97.PubMedCrossRefGoogle Scholar
  82. 82.
    Ho PM, Maddox TM, Wang L, et al. Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA. 2009;301:937–44.PubMedCrossRefGoogle Scholar
  83. 83.
    Kwok CS, Loke YK. Meta-analysis: the effects of proton pump inhibitors on cardiovascular events and mortality in patients receiving clopidogrel. Aliment Pharmacol Ther. 2010;31:810–23.PubMedGoogle Scholar
  84. 84.
    Bhatt DL, Cryer BL, Contant CF, et al. Clopidogrel with or without omeprazole in coronary artery disease. N Engl J Med. 2010;363:1909–17.PubMedCrossRefGoogle Scholar
  85. 85.
    Juurlink DNMDP, Gomes TM, Mamdani MMPMBAMPH, Gladstone DJMDP, Kapral MKMDM. The safety of proton pump inhibitors and clopidogrel in patients after stroke. Stroke. 2011;42:128–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Lanas A, Garcia-Rodriguez LA, Arroyo MT, et al. Effect of antisecretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti-inflammatory drugs, antiplatelet agents, and anticoagulants. Am J Gastroenterol. 2007;102:507–15.PubMedCrossRefGoogle Scholar
  87. 87.
    Kallmes DF, McGraw JK, Evans AJ, et al. Thrombogenicity of hydrophilic and nonhydrophilic microcatheters and guiding catheters. AJNR Am J Neuroradiol. 1997;18:1243–51.PubMedGoogle Scholar
  88. 88.
    Abe T, Hirohata M, Tanaka N, et al. Distal-tip shape-consistency testing of steam-shaped microcatheters suitable for cerebral aneurysm coil placement. AJNR Am J Neuroradiol. 2004;25:1058–61.PubMedGoogle Scholar
  89. 89.
    Kiyosue H, Hori Y, Matsumoto S, et al. Shapability, memory, and luminal changes in microcatheters after steam shaping: a comparison of 11 different microcatheters. AJNR Am J Neuroradiol. 2005;26:2610–6.PubMedGoogle Scholar
  90. 90.
    Takahira K, Kataoka T, Ogino T, Endo H, Nakamura H. Efficacy of a coaxial system with a compliant balloon catheter for navigation of the penumbra reperfusion catheter in tortuous arteries: technique and case experience. J Neurosurg. 2017;126:1334–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Graves VB. Advancing loop technique for endovascular access to the anterior cerebral artery. AJNR Am J Neuroradiol. 1998;19:778–80.PubMedGoogle Scholar
  92. 92.
    Cho YD, Kang HS, Kim JE, et al. Microcatheter looping technique for coil embolization of complex configuration middle cerebral artery aneurysms. Neurosurgery. 2012;71:1185–91; discussion 91.PubMedCrossRefGoogle Scholar
  93. 93.
    Engelhorn T, Struffert T, Richter G, et al. Flat panel detector angiographic CT in the management of aneurysmal rupture during coil embolization. AJNR Am J Neuroradiol. 2008;29:1581–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Struffert T, Richter G, Engelhorn T, et al. Visualisation of intracerebral haemorrhage with flat-detector CT compared to multislice CT: results in 44 cases. Eur Radiol. 2009;19:619–25.PubMedCrossRefGoogle Scholar
  95. 95.
    Doelken M, Struffert T, Richter G, et al. Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT. Neuroradiology. 2008;50:517–23.PubMedCrossRefGoogle Scholar
  96. 96.
    Struffert T, Eyupoglu IY, Huttner HB, et al. Clinical evaluation of flat-panel detector compared with multislice computed tomography in 65 patients with acute intracranial hemorrhage: initial results. Clinical article. J Neurosurg. 2010;113:901–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Sato K, Matsumoto Y, Kondo R, Tominaga T. Usefulness of C-arm cone-beam computed tomography in endovascular treatment of traumatic carotid cavernous fistulas: a technical case report. Neurosurgery. 2010;67:467–9; discussion 9–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Namba K, Niimi Y, Song JK, Berenstein A. Use of Dyna-CT angiography in neuroendovascular decision-making. A Case Report. Interv Neuroradiol. 2009;15:67–72.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Söderman M, Babic D, Holmin S, Andersson T. Brain imaging with a flat detector C-arm: technique and clinical interest of XperCT. Neuroradiology. 2008;50:863–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Matas R. Some of the problems related to the surgery of the vascular system: testing the efficiency of the collateral circulation as a preliminary to the occlusion of the great surgical arteries. Presidential address. Trans Amer Surg Assoc. 1910;28:4–54.Google Scholar
  101. 101.
    Allen JW, Alastra AJ, Nelson PK. Proximal intracranial internal carotid artery branches: prevalence and importance for balloon occlusion test. J Neurosurg. 2005;102:45–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Lesley WS, Bieneman BK, Dalsania HJ. Selective use of the paraophthalmic balloon test occlusion (BTO) to identify a false-negative subset of the cervical carotid BTO. Minim Invasive Neurosurg. 2006;49:34–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Linskey ME, Jungreis CA, Yonas H, et al. Stroke risk after abrupt internal carotid artery sacrifice: accuracy of preoperative assessment with balloon test occlusion and stable xenon-enhanced CT. AJNR Am J Neuroradiol. 1994;15:829–43.PubMedGoogle Scholar
  104. 104.
    Dare AO, Gibbons KJ, Gillihan MD, Guterman LR, Loree TR, Hicks WL Jr. Hypotensive endovascular test occlusion of the carotid artery in head and neck cancer. Neurosurg Focus. 2003;14:e5.PubMedCrossRefGoogle Scholar
  105. 105.
    Marshall RS, Lazar RM, Pile-Spellman J, et al. Recovery of brain function during induced cerebral hypoperfusion. Brain. 2001;124:1208–17.PubMedCrossRefGoogle Scholar
  106. 106.
    Standard SC, Ahuja A, Guterman LR, et al. Balloon test occlusion of the internal carotid artery with hypotensive challenge. AJNR Am J Neuroradiol. 1995;16:1453–8.PubMedGoogle Scholar
  107. 107.
    Dare AO, Chaloupka JC, Putman CM, Fayad PB, Awad IA. Failure of the hypotensive provocative test during temporary balloon test occlusion of the internal carotid artery to predict delayed hemodynamic ischemia after therapeutic carotid occlusion. Surg Neurol. 1998;50:147–55; discussion 55–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Marshall RS, Lazar RM, Mohr JP, et al. Higher cerebral function and hemispheric blood flow during awake carotid artery balloon test occlusions. J Neurol Neurosurg Psychiatry. 1999;66:734–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Cloughesy TF, Nuwer MR, Hoch D, Vinuela F, Duckwiler G, Martin N. Monitoring carotid test occlusions with continuous EEG and clinical examination. J Clin Neurophysiol. 1993;10:363–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Schellhammer F, Heindel W, Haupt WF, Landwehr P, Lackner K. Somatosensory evoked potentials: a simple neurophysiological monitoring technique in supra-aortal balloon test occlusions. Eur Radiol. 1998;8(9):1586.PubMedCrossRefGoogle Scholar
  111. 111.
    Takeda N, Fujita K, Katayama S, Tamaki N. Cerebral oximetry for the detection of cerebral ischemia during temporary carotid artery occlusion. Neurol Med Chir (Tokyo). 2000;40:557–62; discussion 62–3.CrossRefGoogle Scholar
  112. 112.
    van Rooij WJ, Sluzewski M, Slob MJ, Rinkel GJ. Predictive value of angiographic testing for tolerance to therapeutic occlusion of the carotid artery. AJNR Am J Neuroradiol. 2005;26:175–8.PubMedGoogle Scholar
  113. 113.
    Abud DG, Spelle L, Piotin M, Mounayer C, Vanzin JR, Moret J. Venous phase timing during balloon test occlusion as a criterion for permanent internal carotid artery sacrifice. AJNR Am J Neuroradiol. 2005;26:2602–9.PubMedGoogle Scholar
  114. 114.
    Schomer DF, Marks MP, Steinberg GK, et al. The anatomy of the posterior communicating artery as a risk factor for ischemic cerebral infarction. N Engl J Med. 1994;330:1565–70.PubMedCrossRefGoogle Scholar
  115. 115.
    Miralles M, Dolz JL, Cotillas J, et al. The role of the circle of Willis in carotid occlusion: assessment with phase contrast MR angiography and transcranial duplex. Eur J Vasc Endovasc Surg. 1995;10:424–30.PubMedCrossRefGoogle Scholar
  116. 116.
    Barker DW, Jungreis CA, Horton JA, Pentheny S, Lemley T. Balloon test occlusion of the internal carotid artery: change in stump pressure over 15 minutes and its correlation with xenon CT cerebral blood flow. AJNR Am J Neuroradiol. 1993;14:587–90.PubMedGoogle Scholar
  117. 117.
    Kurata A, Miyasaka Y, Tanaka C, Ohmomo T, Yada K, Kan S. Stump pressure as a guide to the safety of permanent occlusion of the internal carotid artery. Acta Neurochir. 1996;138:549–54.PubMedCrossRefGoogle Scholar
  118. 118.
    Morishima H, Kurata A, Miyasaka Y, Fujii K, Kan S. Efficacy of the stump pressure ratio as a guide to the safety of permanent occlusion of the internal carotid artery. Neurol Res. 1998;20:732–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Eckert B, Thie A, Carvajal M, Groden C, Zeumer H. Predicting hemodynamic ischemia by transcranial Doppler monitoring during therapeutic balloon occlusion of the internal carotid artery. AJNR Am J Neuroradiol. 1998;19:577–82.PubMedGoogle Scholar
  120. 120.
    Marshall RS, Lazar RM, Young WL, et al. Clinical utility of quantitative cerebral blood flow measurements during internal carotid artery test occlusions. Neurosurgery. 2002;50:996–1004; discussion 1004−5.Google Scholar
  121. 121.
    Jain R, Hoeffner EG, Deveikis JP, Harrigan MR, Thompson BG, Mukherji SK. Carotid perfusion CT with balloon occlusion and acetazolamide challenge test: feasibility. Radiology. 2004;231:906–13.PubMedCrossRefGoogle Scholar
  122. 122.
    Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001;22:905–14.PubMedGoogle Scholar
  123. 123.
    Brunberg JA, Frey KA, Horton JA, Deveikis JP, Ross DA, Koeppe RA. [15O]H2O positron emission tomography determination of cerebral blood flow during balloon test occlusion of the internal carotid artery. AJNR Am J Neuroradiol. 1994;15:725–32.PubMedGoogle Scholar
  124. 124.
    Tomura N, Omachi K, Takahashi S, et al. Comparison of technetium Tc 99m hexamethylpropyleneamine oxime single-photon emission tomograph with stump pressure during the balloon occlusion test of the internal carotid artery. AJNR Am J Neuroradiol. 2005;26:1937–42.PubMedGoogle Scholar
  125. 125.
    Nathan MA, Bushnell DL, Kahn D, Simonson TM, Kirchner PT. Crossed cerebellar diaschisis associated with balloon test occlusion of the carotid artery. Nucl Med Commun. 1994;15:448–54.PubMedCrossRefGoogle Scholar
  126. 126.
    Yonas H, Linskey M, Johnson DW, et al. Internal carotid balloon test occlusion does require quantitative CBF. AJNR Am J Neuroradiol. 1992;13:1147–52.PubMedGoogle Scholar
  127. 127.
    Michel E, Liu H, Remley KB, et al. Perfusion MR neuroimaging in patients undergoing balloon test occlusion of the internal carotid artery. AJNR Am J Neuroradiol. 2001;22:1590–6.PubMedGoogle Scholar
  128. 128.
    Charbel FT, Zhao M, Amin-Hanjani S, Hoffman W, Du X, Clark ME. A patient-specific computer model to predict outcomes of the balloon occlusion test. J Neurosurg. 2004;101:977–88.PubMedCrossRefGoogle Scholar
  129. 129.
    Mathis JM, Barr JD, Jungreis CA, et al. Temporary balloon test occlusion of the internal carotid artery: experience in 500 cases. AJNR Am J Neuroradiol. 1995;16:749–54.PubMedGoogle Scholar
  130. 130.
    Gardner W. Injection of procaine into the brain to locate speech area in left-handed persons. Arch Neurol Psychiatr. 1941;46:1035–8.CrossRefGoogle Scholar
  131. 131.
    Wada J. Clinical experimental observations of carotid artery injections of sodium amytal. Igaku To Seibutsugaku. 1949;14:221–2.Google Scholar
  132. 132.
    Wada JA. Clinical experimental observations of carotid artery injections of sodium amytal. Brain Cogn. 1997;33:11–3.PubMedCrossRefGoogle Scholar
  133. 133.
    Rovit R, Gloor P, Rasmussen T. Effect of intracarotid injection of sodium amytal on epileptiform EEG discharges: a clinical study. Trans Am Neurol Assoc. 1960;85:161–5.PubMedGoogle Scholar
  134. 134.
    Rovit RL, Gloor P, Rasmussen T. Intracarotid amobarbital in epileptic patients. A new diagnostic tool in clinical electroencephalography. Arch Neurol. 1961;5:606–26.PubMedCrossRefGoogle Scholar
  135. 135.
    Branch C, Milner B, Rasmussen T. Intracarotid sodium amytal for the lateralization of cerebral speech dominance; observations in 123 patients. J Neurosurg. 1964;21:399–405.PubMedCrossRefGoogle Scholar
  136. 136.
    Milner B, Branch C, Rasmussen T. Study of short-term memory after intracarotid injection of sodium amytal. Trans Am Neurol Assoc. 1962;87:224–6.Google Scholar
  137. 137.
    Jack CR Jr, Nichols DA, Sharbrough FW, Marsh WR, Petersen RC. Selective posterior cerebral artery Amytal test for evaluating memory function before surgery for temporal lobe seizure. Radiology. 1988;168:787–93.PubMedCrossRefGoogle Scholar
  138. 138.
    Jack CR Jr, Nichols DA, Sharbrough FW, et al. Selective posterior cerebral artery injection of amytal: new method of preoperative memory testing. Mayo Clin Proc. 1989;64:965–75.PubMedCrossRefGoogle Scholar
  139. 139.
    Wieser HG, Muller S, Schiess R, et al. The anterior and posterior selective temporal lobe amobarbital tests: angiographic, clinical, electroencephalographic, PET, SPECT findings, and memory performance. Brain Cogn. 1997;33:71–97.PubMedCrossRefGoogle Scholar
  140. 140.
    Grote CL, Meador K. Has amobarbital expired? Considering the future of the Wada. Neurology. 2005;65:1692–3.PubMedCrossRefGoogle Scholar
  141. 141.
    Buchtel HA, Passaro EA, Selwa LM, Deveikis J, Gomez-Hassan D. Sodium methohexital (brevital) as an anesthetic in the Wada test. Epilepsia. 2002;43:1056–61.PubMedCrossRefGoogle Scholar
  142. 142.
    Jones-Gotman M, Sziklas V, Djordjevic J, et al. Etomidate speech and memory test (eSAM): a new drug and improved intracarotid procedure. Neurology. 2005;65:1723–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Takayama M, Miyamoto S, Ikeda A, et al. Intracarotid propofol test for speech and memory dominance in man. Neurology. 2004;63:510–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Mikuni N, Takayama M, Satow T, et al. Evaluation of adverse effects in intracarotid propofol injection for Wada test. Neurology. 2005;65:1813–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Wada J, Gibson WC. Behavioral and EEG changes induced by injection of schizophrenic urine extract. AMA Arch Neurol Psychiatry. 1959;81:747–64.PubMedCrossRefGoogle Scholar
  146. 146.
    Mader MJ, Romano BW, De Paola L, Silvado CE. The Wada test: contributions to standardization of the stimulus for language and memory assessment. Arq Neuropsiquiatr. 2004;62:582–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Dodrill CB, Ojemann GA. An exploratory comparison of three methods of memory assessment with the intracarotid amobarbital procedure. Brain Cogn. 1997;33:210–23.PubMedCrossRefGoogle Scholar
  148. 148.
    Serafetinides EA, Falconer MA. The effects of temporal lobectomy in epileptic patients with psychosis. J Ment Sci. 1962;108:584–93.PubMedCrossRefGoogle Scholar
  149. 149.
    Wieser HG, Yasargil MG. Selective amygdalohippocampectomy as a surgical treatment of mesiobasal limbic epilepsy. Surg Neurol. 1982;17:445–57.PubMedCrossRefGoogle Scholar
  150. 150.
    Setoain X, Arroyo S, Lomena F, et al. Can the Wada test evaluate mesial temporal function? A SPECT study. Neurology. 2004;62:2241–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Urbach H, Kurthen M, Klemm E, et al. Amobarbital effects on the posterior hippocampus during the intracarotid amobarbital test. Neurology. 1999;52:1596–602.PubMedCrossRefGoogle Scholar
  152. 152.
    Ojemann JG, Kelley WM. The frontal lobe role in memory: a review of convergent evidence and implications for the Wada memory test. Epilepsy Behav. 2002;3:309–15.PubMedCrossRefGoogle Scholar
  153. 153.
    Lacruz ME, Alarcon G, Akanuma N, et al. Neuropsychological effects associated with temporal lobectomy and amygdalohippocampectomy depending on Wada test failure. J Neurol Neurosurg Psychiatry. 2004;75:600–7.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Selwa LM, Buchtel HA, Henry TR. Electrocerebral recovery during the intracarotid amobarbital procedure: influence of interval between injections. Epilepsia. 1997;38:1294–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Grote CL, Wierenga C, Smith MC, et al. Wada difference a day makes: interpretive cautions regarding same-day injections. Neurology. 1999;52:1577–82.PubMedCrossRefGoogle Scholar
  156. 156.
    Bengner T, Haettig H, Merschhemke M, Dehnicke C, Meencke HJ. Memory assessment during the intracarotid amobarbital procedure: influence of injection order. Neurology. 2003;61:1582–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Terzian H. Behavioural and Eeg effects of intracarotid sodium amytal injection. Acta Neurochir. 1964;12:230–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Masia SL, Perrine K, Westbrook L, Alper K, Devinsky O. Emotional outbursts and post-traumatic stress disorder during intracarotid amobarbital procedure. Neurology. 2000;54:1691–3.PubMedCrossRefGoogle Scholar
  159. 159.
    de Paola L, Mader MJ, Germiniani FM, et al. Bizarre behavior during intracarotid sodium amytal testing (Wada test): are they predictable? Arq Neuropsiquiatr. 2004;62:444–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Kanemoto K, Kawasaki J, Takenouchi K, et al. Lateralized memory deficits on the Wada test correlate with the side of lobectomy only for patients with unilateral medial temporal lobe epilepsy. Seizure. 1999;8:471–5.PubMedCrossRefGoogle Scholar
  161. 161.
    Rapport RL, Tan CT, Whitaker HA. Language function and dysfunction among Chinese- and English-speaking polyglots: cortical stimulation, Wada testing, and clinical studies. Brain Lang. 1983;18:342–66.PubMedCrossRefGoogle Scholar
  162. 162.
    Gomez-Tortosa E, Martin EM, Gaviria M, Charbel F, Ausman JI. Selective deficit of one language in a bilingual patient following surgery in the left perisylvian area. Brain Lang. 1995;48:320–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Kipervasser S, Andelman F, Kramer U, Nagar S, Fried I, Neufeld MY. Effects of topiramate on memory performance on the intracarotid amobarbital (Wada) test. Epilepsy Behav. 2004;5:197–203.PubMedCrossRefGoogle Scholar
  164. 164.
    Bookheimer S, Schrader LM, Rausch R, Sankar R, Engel J Jr. Reduced anesthetization during the intracarotid amobarbital (Wada) test in patients taking carbonic anhydrase-inhibiting medications. Epilepsia. 2005;46:236–43.PubMedCrossRefGoogle Scholar
  165. 165.
    Ammerman JM, Caputy AJ, Potolicchio SJ. Endovascular ablation of a temporal lobe epileptogenic focus—a complication of Wada testing. Acta Neurol Scand. 2005;112:189–91.PubMedCrossRefGoogle Scholar
  166. 166.
    Urbach H, Von Oertzen J, Klemm E, et al. Selective middle cerebral artery Wada tests as a part of presurgical evaluation in patients with drug-resistant epilepsies. Epilepsia. 2002;43:1217–23.PubMedCrossRefGoogle Scholar
  167. 167.
    Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology. 2003;61:699–701.PubMedCrossRefGoogle Scholar
  168. 168.
    Papanicolaou AC, Simos PG, Castillo EM, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100:867–76.PubMedCrossRefGoogle Scholar
  169. 169.
    Knake S, Haag A, Hamer HM, et al. Language lateralization in patients with temporal lobe epilepsy: a comparison of functional transcranial Doppler sonography and the Wada test. NeuroImage. 2003;19:1228–32.PubMedCrossRefGoogle Scholar
  170. 170.
    Salanova V, Morris HH 3rd, Rehm P, et al. Comparison of the intracarotid amobarbital procedure and interictal cerebral 18-fluorodeoxyglucose positron emission tomography scans in refractory temporal lobe epilepsy. Epilepsia. 1992;33:635–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Hong SB, Roh SY, Kim SE, Seo DW. Correlation of temporal lobe glucose metabolism with the Wada memory test. Epilepsia. 2000;41:1554–9.PubMedCrossRefGoogle Scholar
  172. 172.
    Rabin ML, Narayan VM, Kimberg DY, et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain. 2004;127:2286–98.PubMedCrossRefGoogle Scholar
  173. 173.
    Richardson MP, Strange BA, Thompson PJ, Baxendale SA, Duncan JS, Dolan RJ. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain. 2004;127:2419–26.PubMedCrossRefGoogle Scholar
  174. 174.
    Vinuela F, Fox AJ, Debrun G, Pelz D. Preembolization superselective angiography: role in the treatment of brain arteriovenous malformations with isobutyl-2 cyanoacrylate. AJNR Am J Neuroradiol. 1984;5:765–9.PubMedGoogle Scholar
  175. 175.
    Pelz DM, Fox AJ, Vinuela F, Drake CC, Ferguson GG. Preoperative embolization of brain AVMs with isobutyl-2 cyanoacrylate. AJNR Am J Neuroradiol. 1988;9:757–64.PubMedGoogle Scholar
  176. 176.
    Peters KR, Quisling RG, Gilmore R, Mickle P, Kuperus JH. Intraarterial use of sodium methohexital for provocative testing during brain embolotherapy. AJNR Am J Neuroradiol. 1993;14:171–4.PubMedGoogle Scholar
  177. 177.
    Han MH, Chang KH, Han DH, Yeon KM, Han MC. Preembolization functional evaluation in supratentorial cerebral arteriovenous malformations with superselective intraarterial injection of thiopental sodium solution. Acta Radiol. 1994;35:212–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Horton JA, Kerber CW. Lidocaine injection into external carotid branches: provocative test to preserve cranial nerve function in therapeutic embolization. AJNR Am J Neuroradiol. 1986;7:105–8.PubMedGoogle Scholar
  179. 179.
    Usubiaga JE, Wikinski J, Ferrero R, Usubiaga LE, Wikinski R. Local anesthetic-induced convulsions in man—an electroencephalographic study. Anesth Analg. 1966;45:611–20.PubMedCrossRefGoogle Scholar
  180. 180.
    Deveikis JP. Sequential injections of amobarbital sodium and lidocaine for provocative neurologic testing in the external carotid circulation. AJNR Am J Neuroradiol. 1996;17:1143–7.PubMedGoogle Scholar
  181. 181.
    Moo LR, Murphy KJ, Gailloud P, Tesoro M, Hart J. Tailored cognitive testing with provocative amobarbital injection preceding AVM embolization. AJNR Am J Neuroradiol. 2002;23:416–21.PubMedGoogle Scholar
  182. 182.
    Rauch RA, Vinuela F, Dion J, et al. Preembolization functional evaluation in brain arteriovenous malformations: the superselective Amytal test. AJNR Am J Neuroradiol. 1992;13:303–8.PubMedGoogle Scholar
  183. 183.
    Paiva T, Campos J, Baeta E, Gomes LB, Martins IP, Parreira E. EEG monitoring during endovascular embolization of cerebral arteriovenous malformations. Electroencephalogr Clin Neurophysiol. 1995;95:3–13.PubMedCrossRefGoogle Scholar
  184. 184.
    Niimi Y, Sala F, Deletis V, Setton A, de Camargo AB, Berenstein A. Neurophysiologic monitoring and pharmacologic provocative testing for embolization of spinal cord arteriovenous malformations. AJNR Am J Neuroradiol. 2004;25:1131–8.PubMedGoogle Scholar
  185. 185.
    Rauch RA, Vinuela F, Dion J, et al. Preembolization functional evaluation in brain arteriovenous malformations: the ability of superselective Amytal test to predict neurologic dysfunction before embolization. AJNR Am J Neuroradiol. 1992;13:309–14.PubMedGoogle Scholar
  186. 186.
    Buckner JC. Factors influencing survival in high-grade gliomas. Semin Oncol. 2003;30:10–4.PubMedCrossRefGoogle Scholar
  187. 187.
    Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery. 1998;42:1083–99; discussion 99–100.PubMedCrossRefGoogle Scholar
  188. 188.
    Burkhardt JK, Riina H, Shin BJ, et al. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg. 2012;77:130–4.PubMedCrossRefGoogle Scholar
  189. 189.
    Gobin YP, Cloughesy TF, Chow KL, et al. Intraarterial chemotherapy for brain tumors by using a spatial dose fractionation algorithm and pulsatile delivery. Radiology. 2001;218:724–32.PubMedCrossRefGoogle Scholar
  190. 190.
    Theodotou C, Shah AH, Hayes S, et al. The role of intra-arterial chemotherapy as an adjuvant treatment for glioblastoma. Br J Neurosurg. 2014;28:438–46.PubMedCrossRefGoogle Scholar
  191. 191.
    Cloughesy TF, Gobin YP, Black KL, et al. Intra-arterial carboplatin chemotherapy for brain tumors: a dose escalation study based on cerebral blood flow. J Neuro-Oncol. 1997;35:121–31.CrossRefGoogle Scholar
  192. 192.
    Yokoyama J, Ohba S, Fujimaki M, et al. Impact of intra-arterial chemotherapy including internal carotid artery for advanced paranasal sinus cancers involving the skull base. Br J Cancer. 2014;111:2229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Ii N, Fuwa N, Toyomasu Y, et al. A novel external carotid arterial sheath system for intra-arterial infusion chemotherapy of head and neck cancer. Cardiovasc Intervent Radiol. 2017;40(7):1099–104.PubMedCrossRefGoogle Scholar
  194. 194.
    Mitsudo K, Shigetomi T, Fujimoto Y, et al. Organ preservation with daily concurrent chemoradiotherapy using superselective intra-arterial infusion via a superficial temporal artery for T3 and T4 head and neck cancer. Int J Radiat Oncol Biol Phys. 2011;79:1428–35.PubMedCrossRefGoogle Scholar
  195. 195.
    Kerber CW, Wong WH, Howell SB, Hanchett K, Robbins KT. An organ-preserving selective arterial chemotherapy strategy for head and neck cancer. AJNR Am J Neuroradiol. 1998;19:935–41.PubMedGoogle Scholar
  196. 196.
    Homma A, Onimaru R, Matsuura K, Robbins KT, Fujii M. Intra-arterial chemoradiotherapy for head and neck cancer. Jpn J Clin Oncol. 2016;46:4–12.PubMedCrossRefGoogle Scholar
  197. 197.
    Robbins KT, Kumar P, Wong FS, et al. Targeted chemoradiation for advanced head and neck cancer: analysis of 213 patients. Head Neck. 2000;22:687–93.PubMedCrossRefGoogle Scholar
  198. 198.
    Kakeda S, Korogi Y, Miyaguni Y, et al. A cone-beam volume CT using a 3D angiography system with a flat panel detector of direct conversion type: usefulness for superselective intra-arterial chemotherapy for head and neck tumors. AJNR Am J Neuroradiol. 2007;28:1783–8.PubMedCrossRefGoogle Scholar
  199. 199.
    Robbins KT, Kumar P, Harris J, et al. Supradose intra-arterial cisplatin and concurrent radiation therapy for the treatment of stage IV head and neck squamous cell carcinoma is feasible and efficacious in a multi-institutional setting: results of radiation therapy oncology group trial 9615. J Clin Oncol. 2005;23:1447–54.PubMedCrossRefGoogle Scholar
  200. 200.
    Rasch CR, Hauptmann M, Schornagel J, et al. Intra-arterial versus intravenous chemoradiation for advanced head and neck cancer: results of a randomized phase 3 trial. Cancer. 2010;116:2159–65.PubMedCrossRefGoogle Scholar
  201. 201.
    Kivela T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol. 2009;93:1129–31.PubMedCrossRefGoogle Scholar
  202. 202.
    Zanaty M, Barros G, Chalouhi N, et al. Update on intra-arterial chemotherapy for retinoblastoma. ScientificWorldJournal. 2014;2014:869604.PubMedPubMedCentralGoogle Scholar
  203. 203.
    Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Abramson DH. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience. Arch Ophthalmol. 2011;129:732–7.PubMedCrossRefGoogle Scholar
  204. 204.
    Klufas MA, Gobin YP, Marr B, Brodie SE, Dunkel IJ, Abramson DH. Intra-arterial chemotherapy as a treatment for intraocular retinoblastoma: alternatives to direct ophthalmic artery catheterization. AJNR Am J Neuroradiol. 2012;33:1608–14.PubMedCrossRefGoogle Scholar
  205. 205.
    Yamane T, Kaneko A, Mohri M. The technique of ophthalmic arterial infusion therapy for patients with intraocular retinoblastoma. Int J Clin Oncol. 2004;9:69–73.PubMedCrossRefGoogle Scholar
  206. 206.
    Yousef YA, Soliman SE, Astudillo PP, et al. Intra-arterial chemotherapy for retinoblastoma: a systematic review. JAMA Ophthalmol. 2016.Google Scholar
  207. 207.
    Suzuki S, Yamane T, Mohri M, Kaneko A. Selective ophthalmic arterial injection therapy for intraocular retinoblastoma: the long-term prognosis. Ophthalmology. 2011;118:2081–7.PubMedCrossRefGoogle Scholar
  208. 208.
    Aziz HA, Lasenna CE, Vigoda M, et al. Retinoblastoma treatment burden and economic cost: impact of age at diagnosis and selection of primary therapy. Clin Ophthalmol. 2012;6:1601–6.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Richards BF, Fleming JB, Shannon CN, Walters BC, Harrigan MR. Safety and cost effectiveness of step-down unit admission following elective neurointerventional procedures. J Neurointerv Surg. 2012;4(5):390–2.PubMedCrossRefGoogle Scholar
  210. 210.
    Mold JW, Stein HF. The cascade effect in the clinical care of patients. N Engl J Med. 1986;314:512–4.PubMedCrossRefGoogle Scholar
  211. 211.
    Woolf SH, Kuzel AJ, Dovey SM, Phillips RL Jr. A string of mistakes: the importance of cascade analysis in describing, counting, and preventing medical errors. Ann Fam Med. 2004;2:317–26.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Schulz K. Being wrong: adventures in the margin of error. New York: Harper Collins; 2010.Google Scholar
  213. 213.
    Schwartz J. Who needs hackers? New York Times. 2007;12:2007.Google Scholar
  214. 214.
    Sherev DA, Shaw RE, Brent BN. Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention. Catheter Cardiovasc Interv. 2005;65:196–202.PubMedCrossRefGoogle Scholar
  215. 215.
    Samal AK, White CJ. Percutaneous management of access site complications. Catheter Cardiovasc Interv. 2002;57:12–23.PubMedCrossRefGoogle Scholar
  216. 216.
    Messina LM, Brothers TE, Wakefield TW, et al. Clinical characteristics and surgical management of vascular complications in patients undergoing cardiac catheterization: interventional versus diagnostic procedures. J Vasc Surg. 1991;13:593–600.PubMedCrossRefGoogle Scholar
  217. 217.
    Eisenberg L, Paulson EK, Kliewer MA, Hudson MP, DeLong DM, Carroll BA. Sonographically guided compression repair of pseudoaneurysms: further experience from a single institution. AJR Am J Roentgenol. 1999;173:1567–73.PubMedCrossRefGoogle Scholar
  218. 218.
    Danzi GB, Sesana M, Capuano C, et al. Compression repair versus low-dose thrombin injection for the treatment of iatrogenic femoral pseudoaneurysm: a retrospective case-control study. Ital Heart J. 2005;6:384–9.PubMedGoogle Scholar
  219. 219.
    Bendszus M, Koltzenburg M, Bartsch AJ, et al. Heparin and air filters reduce embolic events caused by intra-arterial cerebral angiography: a prospective, randomized trial. Circulation. 2004;110:2210–5.PubMedCrossRefGoogle Scholar
  220. 220.
    Cardella JF, Casarella WJ, DeWeese JA, et al. Optimal resources for the examination and endovascular treatment of the peripheral and visceral vascular systems: AHA Intercouncil report on peripheral and visceral angiographic and interventional laboratories. J Vasc Interv Radiol. 2003;14:517S–30.CrossRefGoogle Scholar
  221. 221.
    Larson TCI, Creasy JL, Price RR, Maciunas RJ. Angiography suite specifications. In: Maciunas RJ, editor. Endovascular neurological intervention. Park Ridge, IL: American Association of Neurological Surgeons; 1995.Google Scholar
  222. 222.
    Badano A. AAPM/RSNA tutorial on equipment selection: PACS equipment overview: display systems. Radiographics. 2004;24:879–89.PubMedCrossRefGoogle Scholar
  223. 223.
    Samei E, Seibert JA, Andriole K, et al. AAPM/RSNA tutorial on equipment selection: PACS equipment overview: general guidelines for purchasing and acceptance testing of PACS equipment. Radiographics. 2004;24:313–34.PubMedCrossRefGoogle Scholar
  224. 224.
    Neuroradiology ASoIaT. General considerations for endovascular surgical Neuroradiologic procedures. AJNR Am J Neuroradiol. 2001;22:1S–3.Google Scholar
  225. 225.
    Bergeron P, Carrier R, Roy D, Blais N, Raymond J. Radiation doses to patients in neurointerventional procedures. AJNR Am J Neuroradiol. 1994;15:1809–12.PubMedGoogle Scholar
  226. 226.
    Hayakawa M, Moritake T, Kataoka F, et al. Direct measurement of patient’s entrance skin dose during neurointerventional procedure to avoid further radiation-induced skin injuries. Clin Neurol Neurosurg. 2010;112(6):530.PubMedCrossRefGoogle Scholar
  227. 227.
    Moskowitz SI, Davros WJ, Kelly ME, Fiorella D, Rasmussen PA, Masaryk TJ. Cumulative radiation dose during hospitalization for aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2010;31:1377–82.PubMedCrossRefGoogle Scholar
  228. 228.
    Measurements NCoRPa. Limitation of Exposure to Ionizing Radiation: Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD1993 March, 1993. Report No.: 116.Google Scholar
  229. 229.
    Measurements NCoRPa. Radiation dose Management for Fluoroscopy-Guided Interventional Medical Procedures. Report number 168. 2010.Google Scholar
  230. 230.
    Pearl MS, Torok C, Wang J, Wyse E, Mahesh M, Gailloud P. Practical techniques for reducing radiation exposure during cerebral angiography procedures. J Neurointerv Surg. 2015;7:141–5.PubMedCrossRefGoogle Scholar
  231. 231.
    Wong SC, Nawawi O, Ramli N, Abd Kadir KA. Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm. Acad Radiol. 2012;19:701–7.PubMedCrossRefGoogle Scholar
  232. 232.
    Given CA, Thacker IC, Baker MD, Morris PP. Fluoroscopy fade for embolization of vein of Galen malformation. AJNR Am J Neuroradiol. 2003;24:267–70.PubMedGoogle Scholar
  233. 233.
    Measurements NCoRPa. Structural Shielding Design for Medical X-Ray Imaging Facilities. Bethesda, MD2004. Report No.: NCRP report 147.Google Scholar
  234. 234.
    Measurements NCoRPa. Medical X-ray, Electron Beam, and Gamma-Ray Protection for Energies up to 50 MeV/G (Equipment Design, Performance, and Use): Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD1989. Report No.: NCRP report 102.Google Scholar
  235. 235.
    Mooney RB, Flynn PA. A comparison of patient skin doses before and after replacement of a neurointerventional fluoroscopy unit. Clin Radiol. 2006;61:436–41.PubMedCrossRefGoogle Scholar
  236. 236.
    Measurements NCoRPa. Implementation of the Principle of as Low as Reasonable Achievable (ALARA) for Medical and Dental Personnel: Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD: The Council; 1990. Report No.: NCRP report 107.Google Scholar
  237. 237.
    Edwards M. Development of radiation protection standards. Radiographics. 1991;11:699–712.PubMedCrossRefGoogle Scholar
  238. 238.
    Boone JM, Levin DC. Radiation exposure to angiographers under different fluoroscopic imaging conditions. Radiology. 1991;180:861–5.PubMedCrossRefGoogle Scholar
  239. 239.
    Wang W, Ionita CN, Keleshis C, et al. Progress in the development of a new angiography suite including the high resolution micro-angiographic fluoroscope (MAF), a control, acquisition, processing, and image display system (CAPIDS), and a new detector changer integrated into a commercial C-arm angiography unit to enable clinical use. Proc SPIE. 2010;7622Google Scholar
  240. 240.
    Binning MJ, Orion D, Yashar P, et al. Use of the micro-angiographic fluoroscope for coiling of intracranial aneurysms. Neurosurgery. 2011;Google Scholar
  241. 241.
    Schiemann M, Killmann R, Kleen M, Abolmaali N, Finney J, Vogl TJ. Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology. 2004;232:475–81.PubMedCrossRefGoogle Scholar
  242. 242.
    Chu JC, Hsi WC, Hubbard L, et al. Performance of magnetic field-guided navigation system for interventional neurosurgical and cardiac procedures. J Appl Clin Med Phys. 2005;6:143–9.PubMedCrossRefGoogle Scholar
  243. 243.
    Seppenwoolde JH, Bartels LW, van der Weide R, Nijsen JF, van Het Schip AD, Bakker CJ. Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging. 2006;23:123–9.PubMedCrossRefGoogle Scholar
  244. 244.
    Wacker FK, Hillenbrand C, Elgort DR, Zhang S, Duerk JL, Lewin JS. MR imaging-guided percutaneous angioplasty and stent placement in a swine model comparison of open- and closed-bore scanners. Acad Radiol. 2005;12:1085–8.PubMedCrossRefGoogle Scholar
  245. 245.
    Wacker FK, Hillenbrand CM, Duerk JL, Lewin JS. MR-guided endovascular interventions: device visualization, tracking, navigation, clinical applications, and safety aspects. Magn Reson Imaging Clin N Am. 2005;13:431–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark R. Harrigan
    • 1
  • John P. Deveikis
    • 2
  1. 1.Departments of Neurosurgery, Neurology and RadiologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Neurosurgery and RadiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations