Skip to main content

Stochastic Effects and Time-Filtered Leapfrog Schemes for Maxwell’s Equations

  • Conference paper
  • First Online:
Mathematics for Nonlinear Phenomena — Analysis and Computation (MNP2015 2015)

Abstract

We consider Maxwell’s equations where the conductivity contains fast random fluctuations in time. Using an Ornstein–Uhlenbeck process, we study the effects of correlations between the random fluctuations of two different time scales, with one an order of magnitude smaller than the other. We show that this asymptotic regime gives rise to a limiting equation where the effects of the fluctuations in the conductivity are captured in additional terms containing deterministic and stochastic corrections. For deterministic dynamics, numerical solutions to the time dependent Maxwell’s equations using a new time stepping scheme are presented. This scheme, which is based on the leapfrog method and a fourth-order time filter, significantly reduces the short oscillations generated by numerical dispersion. It uses staggering in space only, allowing explicit treatment of the electric current density terms and application of numerical smoothers. Comparisons of simulation results where Maxwell’s equations are integrated in a presence of the scattering of an electromagnetic pulse by a perfectly conducting square and those obtained with the unfiltered leapfrog show that the developed method is robust and accurate.

Dedicated to Professor Yoshikazu Giga

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.S. Baturin, Y.M. Belousov, V.N. Gorelkin, V.P. Krainov, V.S. Rastunkov, Laser induced negative conductivity of diamond. Laser Phys. Lett. 3(12), 578–583 (2006)

    Article  Google Scholar 

  2. L. Borcea, J. Garnier, Polarization effects for electromagnetic wave propagation in random media. preprint (2016)

    Google Scholar 

  3. J. Durazo, E. Kostelich, A. Mahalov, W. Tang, Observing system experiments with an ionospheric electrodynamics model. Physica Scripta 91(4), 044001 (2016). https://dx.doi.org/10.1088/0031-8949/91/4/044001

  4. F. Flandoli, A. Mahalov, Stochastic 3D rotating Navier-Stokes equations: averaging, convergence and regularity. Arch. Ration. Mech. Anal. 205, 195–237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. C.W. Gardiner, Handbook of Stochastic Methods for Physics (Chemistry and the Natural Sciences. Springer, Berlin, 1985)

    Google Scholar 

  6. J. Garnier, K. Sølna, Paraxial coupling of electromagnetic waves in random media. Multiscale Model. Simul. 7(4), 1928–1955 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Garnier, K. Sølna, Transmission and reflection of electromagnetic waves in randomly layeredmedia. Commun. Math. Sci. 13(3), 707–728 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. I.A. Ibragimov, Y.V. Linnik, Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971)

    MATH  Google Scholar 

  9. C.-Y. Jung, B. Kwon, A. Mahalov, T.B. Nguyen, Solution of Maxwell equations in media with multiple random interfaces. Int. J. Numer. Anal. Model. 11(1), 194–213 (2014)

    MATH  Google Scholar 

  10. J.H. Kim, S.Y. Sohn, An asymptotic diffusion limit for electromagnetic wave reflection from a random medium. SIAM J. Appl. Math. 60(5), 1502–1519 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. M.C. Kelley, The Earth’s Ionosphere, Plasma Physics and Electrodynamics, International Geophysics Series, vol. 43 (Academic Press, San Diego, 1989)

    Google Scholar 

  12. W. Kohler, G. Papanicolaou, M. Postel, B. White, Reflection of pulsed electromagnetic waves from a randomly stratified half-space. J. Opt. Soc. Am. A 8(7), 1109–1125 (1991)

    Article  Google Scholar 

  13. A. Mahalov, Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh-Taylor turbulence and nonequilibrium layer dynamics at fine scales. Physica Scripta, Phys. Scr. 89, 098001 (22pp), Royal Swedish Academy of Sciences (2014)

    Google Scholar 

  14. A. Mahalov, M. Moustaoui, Time-filtered leapfrog integration of Maxwell equations using unstaggered temporal grids. J. Comput. Phys. 325, 98–115 (2016)

    Article  MathSciNet  Google Scholar 

  15. A. Mahalov, M. Moustaoui, V. Grubišić, A numerical study of mountain waves in the upper troposphere and lower stratosphere. Atmos. Chem. Phys. 11, 5123–5139 (2011)

    Google Scholar 

  16. A. Mahalov, E. Suazo, S. Suslov, Spiral laser beams in inhomogeneous media. Opt. Lett. Opt. Soc. Am. 38(15), 2763–2769 (2013)

    Article  Google Scholar 

  17. R. McGranaghan, D.J. Knipp, T. Matsuo, H. Godinez, R.J. Redmon, S.C. Solomon, S.K. Morley, Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: empirical orthogonal function analysis. J. Geophys. Res.: Space Phys. 120(12), 11,013-11,031 (2015)

    Google Scholar 

  18. G. Papanicolaou, L. Ryzhik, K. Sølna, Self-averaging from lateral diversity in the Itô Schrödinger equation. Multiscale Model. Simul. 6(2), 468–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. G.A. Pavliotis, A.M. Stuart, Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics, vol. 53 (Springer, New York, 2008); Stochastic Effects and Time-Filtered Leapfrog Schemes for Maxwell’s Equations 21

    Google Scholar 

  20. V. Ryzhii, Microwave-induced negative conductivity and zero-resistance states in twodimensional electronic systems: history and current status. Phys.-Usp. 48(2), 191–198 (2005)

    Article  Google Scholar 

  21. V. Ryzhii, M. Ryzhii, T. Otsuji, Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys. 101, 083114 (2007)

    Article  Google Scholar 

  22. W. Tang, A. Mahalov, Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere. Phys. Plasm. Am. Inst. Phys. 20(3) (2013)

    Google Scholar 

  23. W. Tang, A. Mahalov, The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere. Phys. Plasm. Am. Inst. Phys. 21(4) (2014)

    Google Scholar 

  24. R.K. Tyson, B.W. Frazier, Field Guide to Adaptive Optics (SPIE Press, 2004)

    Google Scholar 

  25. F. Wang, I. Toselli, O. Korotkova, Two spatial light modulator system for laboratory simulation of random beam propagation in random media. Appl. Opt. 55(5), 1112–1117 (2016)

    Article  Google Scholar 

  26. L.J. Wicker, W.C. Skamarock, Time splitting methods for elastic models using forward time schemes. Mon. Wea. Rev. 130, 2088–2097 (2002)

    Article  Google Scholar 

  27. K.S. Yee, Numerical solution of initial boundary values problems involving Maxwell’s equations in isotopic media. IEEE Tran. Antennas Propagat. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-15-1-0096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mahalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahalov, A., McDaniel, A. (2017). Stochastic Effects and Time-Filtered Leapfrog Schemes for Maxwell’s Equations. In: Maekawa, Y., Jimbo, S. (eds) Mathematics for Nonlinear Phenomena — Analysis and Computation. MNP2015 2015. Springer Proceedings in Mathematics & Statistics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-66764-5_7

Download citation

Publish with us

Policies and ethics