Skip to main content

Sustainability of Biomass

  • Chapter
  • First Online:
Biomass and Green Chemistry

Abstract

The bio-based economy is considered one of the options for mitigating greenhouse gas (GHG) emissions and is pursued by many countries seeking not only emissions reductions but also greater independency and security. In this context, biofuels production has expanded in the first decade of this century, and the same increase can occur with biomaterials in the years to come. However, despite the large appeal of biofuel, various concerns regarding its sustainability have been raised, constraining production and imposing the necessity to attest compliance with some principles and criteria. As a result of interest group advocacy, a diversity of sustainability initiatives has emerged in recent years in the bioenergy context, which may soon be extended to chemicals and biomaterials as well. This chapter presents the main technical regulations and standards for bioenergy currently in place and discusses the social, economic, and environmental issues these address. Guided by the set principles and criteria, there is evidence supporting that, if implemented correctly, the bio-based economy can indeed offer significant contributions toward sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    LUC may also influence the extent to which the land surface reflects incoming sunlight (i.e., the albedo), and thereby global warming. As pointed out by Berndes et al. (2011), in regions with seasonal snow cover or a seasonal dry period (e.g., savannahs), reduction in albedo caused by the introduction of perennial green vegetative cover can counteract the climate change mitigation benefit of bioenergy. Conversely, albedo increases associated with the conversion of forests to energy crops (e.g., annual crops and grasses) may counter the global warming effect of CO2 emissions from deforestation.

  2. 2.

    As there is no information about how the feedstock from a newly cultivated land parcel will be used, the concept of dLUC is not applicable within the models. For this reason, some authors refer to the land use changes modeled in economics models as induced land use change.

References

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision (No. 12-03). ESA Working Paper, FAO Agricultural Development Economics Division, Rome

    Google Scholar 

  • ARB (2017) Low carbon fuel standard [WWW Document]. https://www.arb.ca.gov/fuels/lcfs/lcfs.htm. Accessed 20 May 2017

  • Arbex M, Martins L, Oliveira R, Pereira L, Arbex F, Cançado J, Saldiva P, Braga A (2007) Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil. J Epidemiol Community Health 61:395–400

    Article  Google Scholar 

  • Azadia H, de Jong S, Derudder B, De Maeyer P, Witlox F (2012) Bitter sweet: how sustainable is bio-ethanol production in Brazil? Renew Sust Energ Rev 16:3599–3603

    Article  Google Scholar 

  • Berndes G (2002) Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Glob Environ Change 12:253–271. https://doi.org/10.1016/S0959-3780(02)00040-7

    Article  Google Scholar 

  • Berndes G, Bird N, Cowie A (2011) Bioenergy, land use change and climate change mitigation: background technical report (No. ExCo:2011:04). Background Technical Report. IEA Bioenergy

    Google Scholar 

  • Berndes G, Youngs H, Ballester MVR, Cantarella H, Cowie AL, Jewitt G, Martinelli LA, Neary D (2015) Soils and water In: Bioenergy and sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp 618–659

    Google Scholar 

  • Bonsucro (2016) Bonsucro production standard – version 4.2. Available at https://www.bonsucro.com/

  • Bonsucro (2017) Information available at https://www.bonsucro.com/. Accessed 12 June 2017

  • Borras SM Jr, Franco J (2010) Towards a broader view of the politics of global land grab: rethinking land issues, reframing resistance. ICAS Working paper series 001

    Google Scholar 

  • Borras SM Jr, Fig D, Suárez SM (2011) The politics of agrofuels and mega-land and water deals: insights from the ProCana case, Mozambique. Rev Afr Polit Econ 38(128):215–234

    Article  Google Scholar 

  • Boulay A-M, Bouchard C, Bulle C, Deschênes L, Margni M (2011) Categorizing water for LCA inventory. Int J Life Cycle Assess 16:639–651. https://doi.org/10.1007/s11367-011-0300-z

    Article  CAS  Google Scholar 

  • Cançado J, Saldiva P, Pereira L, Lara L, Artaxo P, Martinelli L, Arbex M, Zanobetti A, Braga A (2006) The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114(5):725–729

    Article  Google Scholar 

  • CBD (Convention on Biological Diversity) (2014) How sectors can contribute to sustainable use and conservation of biodiversity. CDB Technical Series 79. PBL Netherlands Environmental Assessment Agency, The Hague

    Google Scholar 

  • Channing Arndt C, Benfica R, Tarp F, Thurlow J, Uaiene R (2008) Biofuels, poverty, and growth: a computable general equilibrium analysis of Mozambique. IFPRI Discussion paper 00803

    Google Scholar 

  • Correia BB (2011) Sustainability requirements for biofuels and the rules of the international law. Masters Dissertation, University of Campinas, Unicamp, Campinas

    Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  • Dale VH, Parish ES, Kline KL (2015) Risks to global biodiversity from fossil-fuel production exceed those from biofuel production. Biofuels Bioprod Biorefin 9(2):177–189

    Article  CAS  Google Scholar 

  • Delucchi MA (2010) Impacts of biofuels on climate change, water use, and land use. Ann NY Acad Sci 1195(1):28–45

    Article  CAS  Google Scholar 

  • Diaz-Chavez R, Berndes G, Neary D, Elia Neto A, Fall M (2011) Water quality assessment of bioenergy production. Biofuels Bioprod Biorefin 5:445–463. https://doi.org/10.1002/bbb.319

    Article  CAS  Google Scholar 

  • Dominguez-Faus R, Powers S, Burken J, Alvarez P (2009) The water footprint of biofuels: a drink or drive issue? Environ Sci Technol 43(9):3005–3010

    Article  CAS  Google Scholar 

  • Edenhofer O, Pichs Madruga R, Sokona Y, United Nations Environment Programme, World Meteorological Organization, Intergovernmental Panel on Climate Change, Potsdam-Institut für Klimafolgenforschung (eds) (2012) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Endres JM, Diaz-Chaves R, Kaffka SR, Pelkmans L, Seabra JEA, Walter A (2015) Sustainability certification. In: Bioenergy & sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp 660–681

    Google Scholar 

  • EPA (2010) Renewable fuel standard program (RFS2). Regulatory impact analysis (No. EPA-420-R-10-006). Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Eriksen SHE, Watson HK (2009) The dynamic context of southern African savannas: investigating emerging threats and opportunities to sustainability. Environ Sci Pol 12(1):5–22

    Article  Google Scholar 

  • European Commission (2017) Energy – voluntary schemes. Information available at http://ec.europa.eu/energy/node/74. Accessed 26 June 2017

  • FAO (2017a) AQUASTAT [WWW Document]. Food Agric Organ. U. N. URL http://www.fao.org/faostat/en/#home. Accessed 17 May 17

  • FAO (2017b) FAOSTAT [WWW Document]. Food Agric Organ. U. N. URL http://www.fao.org/faostat/en/#home. Accessed 30 May 17

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. https://doi.org/10.1126/science.1152747

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  CAS  Google Scholar 

  • GBEP (Global Bioenergy Partnership) (2011) The global bioenergy partnership sustainability indicators for bioenergy. FAO, Rome

    Google Scholar 

  • GBEP (Global Bioenergy Partnership) (2017) Information available at http://www.globalbioenergy.org/. Accessed June 2017

  • Gerbens-Leenes PW, Hoekstra AY, van der Meer T (2009) The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol Econ 68:1052–1060. https://doi.org/10.1016/j.ecolecon.2008.07.013

    Article  Google Scholar 

  • Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001. https://doi.org/10.1088/1748-9326/3/3/034001

    Article  Google Scholar 

  • Gilio L, Moraes M (2016) Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: a spatial dynamic panel approach. Energ Econ 58:27–37

    Article  Google Scholar 

  • Goovaerts L, Pelkmans L, Goh CS, Junginger M, Joudrey J, Chum H, Smith CT, Stupak I, Cowie A, Dahlman L, Englund O, Goss A (2013) Monitoring sustainability certification of bioenergy. Report of task 1: examining sustainability certification of bioenergy. IEA Bioenergy, IEA, Paris

    Google Scholar 

  • Hennenberg K, Dragisic C, Haye S, Hewson J, Semroc B, Savy C, Wiegmann K, Fehrenbach H, Fritsche U (2010) The power of bioenergy-related standards to protect biodiversity. Conserv Biol 24(2):412–423

    Article  CAS  Google Scholar 

  • Hernandes TAD, Bufon VB, Seabra JEA (2014) Water footprint of biofuels in Brazil: assessing regional differences. Biofuels Bioprod Biorefin 8:241–252. https://doi.org/10.1002/bbb.1454

    Article  CAS  Google Scholar 

  • Herreras-Martínez SH, van Eijck J, Cunha MP, Guilhoto JMM, Walter A, Faaij A (2013) Analysis of socio-economic impacts of sustainable sugarcane–ethanol production by means of inter-regional input–output analysis: demonstrated for Northeast Brazil. Renew Sust Energ Rev 28:290–316

    Article  Google Scholar 

  • Hochman G, Zilberman D, Rajagopal D (2010) Are biofuels the culprit? OPEC, food, and fuel. Am Econ Rev 100(2):183–187

    Article  Google Scholar 

  • ISCC (2016) Sustainability requirements – vesioSSS n 3.0. Available at www.iscc-system.org/

  • ISCC (International Sustainability & Carbon Certification) (2017) Information available at www.iscc-system.org/. Accessed 12 June 2017

  • ISO (2015) ISO 13065: sustainability criteria for bioenergy. ISO, Geneva

    Google Scholar 

  • Karp A, Artaxo Netto PE, Berndes G, Cantarella H, El-Lakany H, Estrada TEMD, Faaij A, Fincher GB, Huntley BJ, Ravindranath NH, Van Sluys M-A, Verdade LM, Youngs H (2015) Environmental and climate security. In: Bioenergy and sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp 138–183

    Google Scholar 

  • Kline K, Martinelli F, Mayer AL, Medeiros R, Oliveira COF, Sparovek G, Walter A, Venier LA (2015) Bioenergy and biodiversity: key lessons from the Pan-American region. Environ Manag 56(6):1377–1396

    Article  Google Scholar 

  • Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol Conserv 141(10):2450–2460

    Article  Google Scholar 

  • Koh LP, Wilcove DS (2007) Cashing in palm oil for conservation. Nature (Lond) 448(7157):993

    Article  CAS  Google Scholar 

  • Kullander S (2010) Food security: crops for people not for cars. Ambio 39(3):249–256

    Article  Google Scholar 

  • Land Matrix (2015) Land Matrix is an online public database on land deals. Available at: http://www.landmatrix.org/en/

  • de Macedo IC, Nassar AM, Cowie AL, Seabra JEA, Marelli L, Otto M, Wang MQ, Tyner WE (2015) Greenhouse gas emissions from bioenergy. In: Bioenergy and sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp 582–617

    Google Scholar 

  • Machado PG (2017) Sustainable development potentials and pathways for biobased economy options: an integrated approach on land use, energy system, economy and greenhouse gases emissions. PhD Thesis, University of Campinas, Unicamp, Campinas

    Google Scholar 

  • Machado PG, Picoli MCA, Torres LJ, Oliveira JG, Walter A (2015) The use of socioeconomic indicators to assess the impacts of sugarcane production in Brazil. Renew Sust Energ Rev 52:1519–1526

    Article  Google Scholar 

  • Machado PG, Walter A, Picoli MC, João CG (2016) Potential impacts on local quality of life due to sugarcane expansion: a case study based on panel data analysis. Environ Dev Sustain 18:1–24

    Article  Google Scholar 

  • Martinelli L, Filoso S (2008) Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 18(4):885–898

    Article  Google Scholar 

  • Mello FFC, Cerri CEP, Davies CA, Holbrook NM, Paustian K, Maia SMF, Galdos MV, Bernoux M, Cerri CC (2014) Payback time for soil carbon and sugar-cane ethanol. Nat Clim Chang 4:605–609. https://doi.org/10.1038/nclimate2239

    Article  CAS  Google Scholar 

  • Moraes MAFD, Oliveira FCR, Diaz-Chavez RA (2015) Socio-economic impacts of Brazilian sugarcane industry. Environ Dev 16:31–43

    Article  Google Scholar 

  • Moraes MAFD, Bacchi MRP, Caldarelli CE (2016) Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy 8(91):116–125

    Article  Google Scholar 

  • Moschini GC, Cui J, Lapan H (2012) Economics of biofuels: an overview of policies, impacts and prospects. Bio-based Appl Econ 1(3):269–296

    Google Scholar 

  • Nantha H, Tisdell C (2009) The orangutan–oil palm conflict: economic constraints and opportunities for conservation. Biodivers Conserv 18:487–502

    Article  Google Scholar 

  • Neto AE, Shintaku A, Pio AAB, Conde AJ, Donzelli JL (2009) Manual de conservação e reuso de água na agroindústria sucroenergética. ANA, Brasília

    Google Scholar 

  • Nogueira LAH, Leal MRLV, Fernandes E, Chum HL, Diaz-Chaves R, Endres JM, Mahakhant A, Otto M, Seebaluck V, van der Wielen L (2015) Sustainable development and innovation. In: Bioenergy and sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp 184–217

    Google Scholar 

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104. https://doi.org/10.1021/es802423e

    Article  CAS  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ Sci Technol 45:5761–5768. https://doi.org/10.1021/es1041755

    Article  CAS  Google Scholar 

  • Phalan B (2009) The social and environmental impacts of biofuels in Asia: an overview. Appl Energ 86:21–29

    Article  Google Scholar 

  • Pilgrim S, Harvey M (2010) Battles over biofuels in Europe: NGOs and the politics of markets. Sociol Res Online 15(3):1–16

    Article  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Hum Ecol 37:1–12

    Article  Google Scholar 

  • Ravagnani RM, Walter A, Matuguma, CA (2016) Background review on social impacts of land grabbing associated to biofuels production. 5th IAEE Asian Conference, Perth, 24–17 February 2016

    Google Scholar 

  • REN21 (2016) Renewables 2016 global status report. REN21 Secretariat, Paris

    Google Scholar 

  • Richardson B (2012) From a fossil-fuel to a biobased economy: the politics of industrial biotechnology. Environ Plan C 30(2):35

    Article  Google Scholar 

  • Robertson B, Pinstrup-Andersen P (2010) Global land acquisition: neo-colonialism or development opportunity? Food Security 2(3):271–283

    Article  Google Scholar 

  • RSB (2016) RSB principle and criteria. Available at http://rsb.org/

  • RSB – Roundtable on Sustainable Biomaterials (2017) Information available at http://rsb.org/. Accessed 12 June 2017

  • Scheidel A, Sorman AH (2012) Energy transitions and the global land rush: ultimate drivers and persistent consequences. Global Environ Change 22:588–595

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, T-H Y (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  CAS  Google Scholar 

  • Semino S, Paul H, Tomei J, Joensen L, Monti M, Jelsoe E (2009) Soybean biomass produced in Argentina: myths and realities. IOP Conference Series. Earth Environ Scie 8(1)

    Google Scholar 

  • Souza GM, Victoria RL, Joly CA, Verdade LM (2015) Bioenergy and sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex

    Google Scholar 

  • TEEB – The Economics of Ecosystems and Biodiversity (2015) TEEB for Agriculture & Food: an interim report. United Nations Environment Programme, Geneva

    Google Scholar 

  • Venter O, Meijaard E, Wilson K (2008) Strategies and alliances needed to protect forest from palm-oil industry. Nature (Lond) 451(7174):16

    Article  CAS  Google Scholar 

  • de Vries SC, van de Ven GWJ, van Ittersum MK, Giller KE (2010) Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques. Biomass Bioenergy 34:588–601

    Article  Google Scholar 

  • Woods J, Lynd LR, Laser M, Batistella M, Victoria D de C, Kline K, Faaij A (2015). Land and bioenergy. In: Bioenergy and sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE), Paris Cedex, pp 258–301

    Google Scholar 

  • Yeh S, Berndes G, Mishra GS, Wani SP, Elia Neto A, Suh S, Karlberg L, Heinke J, Garg KK (2011) Evaluation of water use for bioenergy at different scales. Biofuels Bioprod Biorefin 5:361–374. https://doi.org/10.1002/bbb.308

    Article  CAS  Google Scholar 

  • Zilberman D, Hochman G, Rajagopal D, Sexton S, Timilsina G (2012) The impact of biofuels on commodity food prices: assessment of findings. Am J Agric Econ 95(2):275–281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim E. A. Seabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walter, A., Seabra, J.E.A., Machado, P.G., de Barros Correia, B., de Oliveira, C.O.F. (2018). Sustainability of Biomass. In: Vaz Jr., S. (eds) Biomass and Green Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66736-2_8

Download citation

Publish with us

Policies and ethics