Skip to main content

Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals

  • Chapter
  • First Online:
Biomass and Green Chemistry

Abstract

The main objective of this chapter is to explore the lignocellulose feedstock (LCF) biorefinery for industrial usage according to green chemistry principles. In particular, the isolation and valorization of lignin as one of the most interesting intermediates of LCF biorefineries is discussed, including lignin isolation, purification, and structure analysis. Structure elucidation involves various chromatographic, spectroscopic, microscopic, and thermochemical methods. Thus, basic structure–property relationships regarding the influence of biomass source and isolation process on lignin amount, constitution, and 3D structure are highlighted. Furthermore, storage effects on lignin structure and degradation effects are presented. Finally, potential applications are discussed, including novel lignin-based hydrogels, composite compounds (hybrids), and nanomaterials. Focus is drawn to antioxidant and antimicrobial activity of lignin for applications in packaging and biomedicine, that is, biomaterials for drug release and tissue engineering.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-66736-2_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal UP, McSweeny JD, Ralph SA (2011) FT-Raman investigation of milled-wood lignins: softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Technol 31:324–344

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  • Ahuja D, Kaushik A, Chauhan GS (2017) Fractionation and physicochemical characterization of lignin from waste jute bags: effect of process parameters on yield and thermal degradation. Int J Biol Macromol 97:403–410

    Article  CAS  Google Scholar 

  • Alekhina M, Ershova O, Ebert A, Heikkinen S, Sixta H (2015) Softwood kraft lignin for value-added applications: fractionation and structural characterization. Ind Crop Prod 66:220–228

    Article  CAS  Google Scholar 

  • Amzad HM, Shah M (2015) A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab J Chem 8:66–71

    Article  Google Scholar 

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  • Baba SA, Malik SA (2015) Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci 9:449–454

    Article  Google Scholar 

  • Balan V, David Chiaramonti D, Kumar S (2013) Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod Biorefin 7:732–759

    Article  CAS  Google Scholar 

  • Barapatre A, Meena AS, Mekala S, Das A, Jha H (2016) In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int J Biol Macromol 86:443–453

    Article  CAS  Google Scholar 

  • Beisl S, Miltner A, Friedl A (2017) Lignin from micro- to nanosize: production methods. Int J Mol Sci 18:1244–1271

    Article  Google Scholar 

  • Bhat R, Abdullah N, Din RH, Tay GS (2013) Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119:707–713

    Article  CAS  Google Scholar 

  • Chang G, Huang Y, Xie J, Yang H, Liu H, Yin X, Wu C (2016) The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers Manag 124:587–597

    Article  CAS  Google Scholar 

  • Chen J, Liu C, Wu SH, Liang J, Lei M (2016) Enhancing the quality of bio-oil from catalytic pyrolysis of kraft black liquor lignin. RSC Adv 6:107970–107976

    Article  CAS  Google Scholar 

  • Ciolacu D, Oprea AM, Anghel N, Cazacu G, Cazacu M (2012) New cellulose-lignin hydrogels and their application in controlled release of polyphenols. Mat Sci Eng C Mater 32:452–463

    Article  CAS  Google Scholar 

  • Constant S,  Wienk HLJ,  Frissen AE,  de Peinder P, Boelens R,  van Es DS, Grisel RJH, Weckhuysen BM,  Huijgen WJJ,  Gosselink RJA,  Bruijnincx PCA (2016) New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18 (9):2651–2665

    Google Scholar 

  • Dababi I, Gimello O, Elaloui E, Quignard F, Brosse N (2016) Organosolv lignin-basedwood adhesive influence of the lignin extraction conditions on the adhesive performance. Polymers (Basel) 8:340/1–340/15

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    CAS  Google Scholar 

  • Dautzenber G, Gerhardt M, Kamm B (2011) Biobased fuels and fuel additives from lignocellulose feedstock. In: Biorefineries: industrial processes and products, status quo and future directions, vol 1. Wiley, Weinheim, pp 139–164

    Google Scholar 

  • Directive 2009/28/EC of 28 April. 2009 on the promotion of the use of energy from renewable sources [online] Available at: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028. [July 03, 2017]

  • Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins––natural antioxidants. Bioresour Technol 95:309–317

    Article  CAS  Google Scholar 

  • Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21:692–701

    Article  CAS  Google Scholar 

  • Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod 34:1629–1634

    Article  CAS  Google Scholar 

  • Downing M, Eaton LM, Graham RL, Langholtz MH, Perlack RD, Turhollow AF Jr, Stokes B, Brandt CC (2011) US billion-ton update: biomass supply for a bioenergy and bio- products industry. Oak Ridge National Laboratory, Oak Ridge

    Book  Google Scholar 

  • Dumitriu S, Popa VI (2013) Polymeric biomaterials, vol 1. CRC Press, Boca Raton, pp 551–578

    Book  Google Scholar 

  • Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the iobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415–1442

    Article  CAS  Google Scholar 

  • Dyne DL, et al (1999) Estimating the economic feasibility of converting Lifno-cellulosic feedstocks to ethanol and higher value chemicals under the refinery concept: a phase II study. OR22072–58, University of Missouri

    Google Scholar 

  • EC (1995) European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners. Official Journal of the European Communities No. L61 18.3.1995. http://ec.europa.eu/food/fs/sfp/addit_flavor/flav11_en.pdf

  • El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab 94:1632–1638

    Article  Google Scholar 

  • El Khaldi-Hansen B, El-Sayed F, Schipper D, Tobiasch E, Witzleben S, Schulze M (2017) Functionalized 3D scaffolds for template-mediated biomineralization in bone regeneration. Front Stem Cell Regen Med Res 4:3–58

    Google Scholar 

  • El Mansouri NE, Salvado J (2007) Analytical methods for determining functional groups in various technical lignins. Ind Crop Prod 26:116–124

    Article  Google Scholar 

  • Elbersen B, Staritsky I, Hengeveld G, Schelhaas MJ, Naeff H, Böttcher H (2012) Atlas of EU biomass potential. Deliverable 3.3: spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources. [online] Available at: http://www.biomassfutures.eu/public_docs/final_deliverables/WP3/D3.3%20%20Atlas%20of%20technical%20and%20economic%20biomass%20potential.pdf. [July 03, 2017]

  • Espinoza-Acosta JL, Torres-Chavez PI, Ramirez-Wong B, Lopez-Saiz CM, Montano-Leyva B (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. Bioresources 11:1–30

    Article  CAS  Google Scholar 

  • Fachagentur Nachwachsende Rohstoffe [online] Available at: https://mediathek.fnr.de/grafiken/daten-und-fakten/stoffliche-einsatzmengen-nachwachsender-rohstoffe-in-deutschland.html. [July 03, 2017]

  • Faix O, Genuit W, Boon JJ (1987) Characterization of beech milled wood lignin by pyrolysis-gas chromatography photoionization mass spectrometry. Anal Chem 59:508–513

    Article  Google Scholar 

  • Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    Article  CAS  Google Scholar 

  • Galbe M, Zacci G (2002) A review of production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    CAS  Google Scholar 

  • Garcia A, Toledano A, Serrano L, Egues I, Gonzalez M, Marin F, Labidi J (2009) Characterization of lignins obtained by selective precipitation. Sep Purif Technol 68:193–198

    Article  CAS  Google Scholar 

  • Garcia A, Gonzalez M, Labidi AJ (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crops Prod 53:102–110

    Article  CAS  Google Scholar 

  • Giannini C, Ladisa M, Altamura D, Siliqi D, Sibillano T, De Caro L (2016) X-ray diffraction: a powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals 6:87/1–87/22

    Article  CAS  Google Scholar 

  • González Arzola K, Polvillo O, Arias ME, Perestelo F, Carnicero A, González-Vila FJ, FalcĂłn MA (2006) Early attack and subsequent changes produced in an industrial lignin by a fungal laccase and a laccase-mediator system: an analytical approach. Appl Microbiol Biotechnol 73:141–150

    Article  Google Scholar 

  • Gordobila O, Delucisb R, EgĂĽĂ©sa I, Labidia J (2015) Kraft lignin as filler in PLA to improve ductility and thermal properties. Ind Crop Prod 72:46–53

    Article  Google Scholar 

  • Granata A, Argyropoulos DS (1995) 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospho-lane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem 43:1538–1544

    Article  CAS  Google Scholar 

  • Grisel RJH, van der Waal JC, de Jong E, Huijgen WJJ (2014) Acid catalysed alcoholysis of wheat straw: towards second generation furan-derivatives. Catal Today 223:3–10

    Article  CAS  Google Scholar 

  • Hamaguchi M, Kautto J, Vakkilainen E (2013) Effects of hemicellulose extraction on the kraft pulp mill operation and energy use: review and case study with lignin removal. Chem Eng Res Des 91:1284–1291

    Article  CAS  Google Scholar 

  • Hansen B (2015) Dissertation, Brandenburgisch-Technische Universität (BTU), Cottbus-Senftenberg

    Google Scholar 

  • Hansen B, Kusch P, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignin produced from beech wood by different conditions of the Organosolv process. J Polym Environ 24:85–97

    Article  CAS  Google Scholar 

  • Harmsen P, Huijgen W, Bermudez L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass, vol. 9.Tech. Rep. 1184, Biosynergy, Wageningen UR Food & Biobased Research, pp 170–174

    Google Scholar 

  • Holladay JE, Bozell JJ, White JF, Johnson D (2007) Top value-added chemicals from biomass. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Hossen M, Rahman S, Kabir AS, Hasan MMF, Ahmed S (2017) Systematic assessment of the availability and utilization potential of biomass in Bangladesh. Renew Sust Energ Rev 67:94–105

    Article  Google Scholar 

  • Imran M, El-Fahmy S, Revol-Junelles AM, Desobry S (2010) Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films. Carbohydr Polym 81:219–225

    Article  CAS  Google Scholar 

  • International Energy Agency (2014) Renewables information (2016 edition). www.iea.org/statistics/topics/renewables/. IEA bioenergy task 42 report

  • Jiang X, Savithri D, Du X, Pawar S, Jameel H, Chang H, Zhou X (2017) Fractionation and characterization of Kraft lignin by sequential precipitation with various organic solvents. ACS Sustain Chem Eng 5:835–842

    Article  CAS  Google Scholar 

  • Joseph J, Rasmussen MJ, Fecteau JP, Kim S, Lee H, Tracy KA, Jensen BL, Frederick BG, Stemmler EA (2016) Compositional changes to low water content bio-oils during aging: an NMR, GC/MS, and LC/MS study. Energy Fuel 30:4825–4840

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M, Schmidt M, Starke I, Kleinpeter E (2006) Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis): quantification of glucose. Chemosphere 62:97–105

    Article  CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2015) Biorefineries: industrial processes and products. Wiley, Weinheim

    Google Scholar 

  • Larsen KL, Barsberg S (2011) Environmental effects on the lignin model monomer, Vanillyl alcohol, studied by Raman spectroscopy. J Phys Chem B 115:11470–11480

    Article  CAS  Google Scholar 

  • Laurichesse S, AvĂ©rous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290

    Article  CAS  Google Scholar 

  • Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, Sousa LD, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–696936

    Google Scholar 

  • Long J, Xu Y, Wang T, Yuan Z, Shu R, Zhang Q, Ma L (2015) Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination. Appl Energy 141:70–79

    Article  CAS  Google Scholar 

  • Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906

    Article  CAS  Google Scholar 

  • Michailof CM, Kalogiannis KG, Sfetsas T, Patiaka DT, Lappas AA (2016) Advanced analytical techniques for bio-oil characterization. WIREs Energy Environ 5:614–639

    Article  CAS  Google Scholar 

  • Nak SN, Goud VV, Rout PK, Dalai AK (2009) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  Google Scholar 

  • Nakagawa-Izumi A, H’ng YY, Mulyantara LT, Maryana R, Do Vu T, Ohi H (2017) Characterization of syringyl and guaiacyl lignins in thermomechanical pulp from oil palm empty fruit bunch by pyrolysis-gas chromatography-mass spectrometry using ion intensity calibration. Ind Crop Prod 95:615–620

    Article  CAS  Google Scholar 

  • Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sust Energ Rev 79:1285–1302

    Article  Google Scholar 

  • Panoutsou C, Uslu A, van Stralen J, Elbersen B, Bottcher H, Fritsche U, Kretschmer B (2012) How much can biomass contribute to meet the demand for 2020 & which market segments are more promising? Proceedings of the 20th EU biomass conference and exhibition, Milan, Italy

    Google Scholar 

  • Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kim H, Kim YH, Ha SH, Lee SH (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J Mol Catal B-Enzym 119:33–39

    Article  CAS  Google Scholar 

  • Puls J (2009) Stoffliche Nutzung von Lignin. GĂĽlzower Fachgespräche Band 31, Fachagentur Nachwachsende Rohstoffe e.V. (FNR), pp 18–41

    Google Scholar 

  • Rabaçal M, Ferreira AF, Silva CAM, Costa M (eds) (2017) Biorefineries: targeting energy,high value products and waste valorisation. Springer International Publishing, Cham

    Google Scholar 

  • Raschip IE, Hitruc GE, Vasile C, Popescu MC (2013) Effect of the lignin type on the morphology and thermal properties of the xanthan/lignin hydrogels. Int J Biol Macromol 54:230–237

    Article  CAS  Google Scholar 

  • Richter AP, Brown JS, Bharti B, Wang A, Gangwal S, Houck K, Cohen H, Elaine A, Paunov VN, Stoyanov SD, Velev OD (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 10:817–823

    Article  CAS  Google Scholar 

  • Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. International Edition 55:8164–8215

    Article  CAS  Google Scholar 

  • Ringpfeil M (2001) Biobased industrial products and biorefinery systems. Industrielle Zukunft des 21. Jahrhunderts? Brandenburgische Umwelt Berichte, BUB 10, ISSN 1434-2375

    Google Scholar 

  • RL W, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100(9):2569–2574

    Google Scholar 

  • Sa’don NA, Abdul Rahim A, Hussin MH (2017) The effect of p-nitrophenol toward the structural characteristics and antioxidant activity of oil palm fronds (OPF) lignin polymers. Int J Biol Macromol 98:701–708

    Article  Google Scholar 

  • Sam ST, Nuradibah MA, Ismail H, Noriman NZ, Ragunathan S (2014) Recent advances in polyolefins/natural polymer blends used for packaging application. Polym Plast Technol 53:631–644

    Article  CAS  Google Scholar 

  • Sana B, Raghavan SS, Ghadessy FJ, Chia KHB, Nagarajan N, Ramalingam B, Seayad J (2017) Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. Biotechnol Biofuels 10:32

    Article  Google Scholar 

  • Sánchez-González L, Chiralt A, González-MartĂ­nez C, Cháfer M (2011) Effect of essential oils on properties of film forming emulsions and films based on hydroxypropyl methylcellulose and chitosan. J Food Eng 105:246–253

    Article  Google Scholar 

  • Santos P, Erdocia X, Gatto DA, Labidi J (2014) Characterisation of Kraft lignin separated by gradient acidprecipitation. Ind Crop Prod 55:149–154

    Article  Google Scholar 

  • Sebti I, Chollet E, Degraeve P, Noel C, Peyrol E, Agri J (2007) Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. J Agric Food Chem 55:693–699

    Article  CAS  Google Scholar 

  • Silva-Weiss A, Ihl M, Sobral PJ, GĂłmez-GuillĂ©n MC, Bifani V (2013) Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Eng Rev 5:200–216

    Article  CAS  Google Scholar 

  • Singh BR, Singh O (2012) Global trends of fossil fuel reserves and climate change in the 21st century (Khan S, ed). Fossil Fuel Environ 2012:168

    Google Scholar 

  • Siracusa V, Blanco I, Romani S, Tylewicz U, Rocculi P, Rosa MD (2012) Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 125:E390–E401

    Article  CAS  Google Scholar 

  • Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure–activity relationship. J Agric Food Chem 50:468–472

    Article  CAS  Google Scholar 

  • Sulaeva I, Zinovyev G, Plankeele JM, Sumerskii I, Rosenau T, Potthast A (2017) Fast track to molar-mass distributions of technical lignins. ChemSusChem 10:629–635

    Article  CAS  Google Scholar 

  • Sun SN, Cao XF, Xu F, Sun RC, Jones GL (2014) Structural features and antioxidant activities of lignins from steam-exploded bamboo (Phyllostachys pubescens). J Agric Food Chem 62:5939–5947

    Article  CAS  Google Scholar 

  • Tajeddin B (2015) Cellulose-based polymers for packaging applications. In: Lignocellulosic polymer composites. Scrivener, New York, pp 477–498

    Google Scholar 

  • Tanjung FA, Husseinsyah S, Hussin K, Hassan A (2016) Mechanical and thermal properties of organosolv lignin/sodium dodecyl sulphate binary agent-treated polypropylene/chitosan composites. Polym Bull (Berl) 73:1427–1445

    Article  CAS  Google Scholar 

  • Tolbert A, Akinosho H, Khunsupat R, Naskar AK, Ragauskas AJ (2014) Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod Biorefin 8:836–856

    Article  CAS  Google Scholar 

  • Vallejos ME, Felissia FE, Curvelo AAS, Zambon MD, Ramos L, Area MC (2011) Chemical and physico-chemical characterization of lignins obtained from ethanol-water fractionation of bagasse. Bioresources 6:1158–1171

    CAS  Google Scholar 

  • Van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Article  Google Scholar 

  • Vaz S Jr (2014) Analytical techniques for the chemical analysis of plant biomass and biomass products. Anal Methods-UK 6:8094–8105

    Article  CAS  Google Scholar 

  • Vaz S Jr (2015) An analytical chemist’s view of lignocellulosic biomass. Bioresources 10:3815–3817

    CAS  Google Scholar 

  • Vázquez G, Antorrena G, González J, Freire S (1997) The influence of pulping conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol 17:147–162

    Article  Google Scholar 

  • Vinardell MP, Mitjans M (2017) Lignins and their derivatives with beneficial effects on human health. Int J Mol Sci 18:1219–1234

    Article  Google Scholar 

  • Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. Bioresources 6:3547–3568

    Google Scholar 

  • Vivekanand V, Chawade A, Larsson M, Larsson A, Olsson O (2014) Identification and qualitative characterization of high and low ligninlines from an oat tilling population. Ind Crop Prod 59:1–8

    Article  CAS  Google Scholar 

  • Wang C, Kelley SS, Venditti RA (2016a) Lignin-based thermoplastic materials. ChemSusChem 9:770–783

    Article  CAS  Google Scholar 

  • Wang K, Loo LS, Goh KL (2016b) A facile method for processing lignin reinforced chitosan biopolymer microfibres: optimising the fibre mechanical properties through lignin type and concentration. Mater Res Express 3:035301/1–035301/13

    CAS  Google Scholar 

  • Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream bocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228

    Article  Google Scholar 

  • Widsten P, Heathcote C, Kandelbauer A, Guebitz G, Nyanhongo GS, Prasetyo EN, Kudanga T (2010) Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties. Process Biochem 45:1072–1081

    Article  CAS  Google Scholar 

  • Wu S, Lv G, Lou R (2012) Applications of chromatography hyphenated techniques in the field of lignin pyrolysis. Appl Gas Chromatogr 2012:41–64

    Google Scholar 

  • Xu F, Shi YC, Wang D (2013) Towards understanding structural changes of photoperiod-sensitive sorghum biomass during sulfuric acid pretreatment. Bioresour Technol 135:704–709

    Article  CAS  Google Scholar 

  • Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM, Kenny JM, Puglia D (2016) Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int J Biol Macromol 89:360–368

    Article  CAS  Google Scholar 

  • Zhang Y, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng 119:694–699

    Article  CAS  Google Scholar 

  • Zhang J, Chen Y, Sewell P, Brook MA (2015) Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem 17:3176

    Article  CAS  Google Scholar 

  • Zhao W, Xiao LP, Song G, Sun RC, He L, Singh S, Simmons BA, Cheng G (2017) From lignin subunits to aggregates: insights into lignin solubilization. Green Chem 19(14):3272–3281

    Google Scholar 

Download references

Acknowledgments

Financial support (scholarship) was given to Abla Alzagameem by the Avempace-II Erasmus-Mundus Programme and the Graduate Institute of the Bonn-Rhein- Sieg University of Applied Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Kamm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alzagameem, A., El Khaldi-Hansen, B., Kamm, B., Schulze, M. (2018). Lignocellulosic Biomass for Energy, Biofuels, Biomaterials, and Chemicals. In: Vaz Jr., S. (eds) Biomass and Green Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66736-2_5

Download citation

Publish with us

Policies and ethics