Generating the Expression of the Move of Go by Classifier Learning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10507)

Abstract

The ancient Chinese board game, Go, with its simple rules yet highly complex strategies, requires players to encircle more territory than their opponent. However, owing to the rise in the capabilities of Go-playing software and a lack of Go instructors in Japan, there is a need for a software that actively assists human players in learning the high-level strategies required to win the game. This study focuses on generating a review for each consecutive player’s move. This paper studies how to generate an expression for each move based on the distribution of the stones on the board. To this task of generating the expression for each move in a game of Go, we apply a classifier learning technique.

Keywords

Entertainment computing Go Classifier learning Move Expression 

References

  1. 1.
    Coulom, R.: Computing elo ratings of move patterns in the game of Go. In: Proceedings of Computer Games Workshop (2007)Google Scholar
  2. 2.
    Ikeda, K., Shishido, T., Viennot, S.: Machine-learning of shape names for the game of Go. In: Plaat, A., Herik, J., Kosters, W. (eds.) ACG 2015. LNCS, vol. 9525, pp. 247–259. Springer, Cham (2015). doi:10.1007/978-3-319-27992-3_22 CrossRefGoogle Scholar
  3. 3.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–503 (2006)CrossRefGoogle Scholar
  5. 5.
    Yoshikawa, A., Kojima, T., Saito, Y.: Relations between skill and the use of terms. In: Herik, H.J., Iida, H. (eds.) CG 1998. LNCS, vol. 1558, pp. 282–299. Springer, Heidelberg (1999). doi:10.1007/3-540-48957-6_19 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Faculty of Engineering, Information and SystemsUniversity of TsukubaTsukubaJapan

Personalised recommendations