Skip to main content

Robust Multi-image HDR Reconstruction for the Modulo Camera

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10496))

Included in the following conference series:

Abstract

Photographing scenes with high dynamic range (HDR) poses great challenges to consumer cameras with their limited sensor bit depth. To address this, Zhao et al. recently proposed a novel sensor concept – the modulo camera – which captures the least significant bits of the recorded scene instead of going into saturation. Similar to conventional pipelines, HDR images can be reconstructed from multiple exposures, but significantly fewer images are needed than with a typical saturating sensor. While the concept is appealing, we show that the original reconstruction approach assumes noise-free measurements and quickly breaks down otherwise. To address this, we propose a novel reconstruction algorithm that is robust to image noise and produces significantly fewer artifacts. We theoretically analyze correctness as well as limitations, and show that our approach significantly outperforms the baseline on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Böhm, M., Blecher, F., Eckhardt, A., Schneider, B., Benthien, S., Keller, H., Lulé, T., Rieve, P., Sommer, M., Lind, R.C., Humm, L., Daniels, M., Wu, N., Yen, H., Efron, U.: High dynamic range image sensors in thin film on ASIC technology for automotive applications. In: Ricken, D.E., Gessner, W. (eds.) Advanced Microsystems for Automotive Applications, pp. 157–172. Springer, Berlin (1998). (Jan)

    Google Scholar 

  2. Chavez, S., Xiang, Q.S., An, L.: Understanding phase maps in MRI: a new cutline phase unwrapping method. IEEE Trans. Med. Imaging 21, 966–977 (2002)

    Article  Google Scholar 

  3. Cordts, M., Omran, M., Ramos, S., Scharwächter, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The Cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  4. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: ACM Transactions Graphics (Proceedings of ACM SIGGRAPH), pp. 369–378, August 1997

    Google Scholar 

  5. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fuji Photo Film Co., Ltd: 4th-generation Super CCD (2003). http://www.fujifilmusa.com/shared/bin/4thGenSUPERCCDBrochure.pdf

  7. Gallo, O., Gelfand, N., Chen, W., Tico, M., Pulli, K.: Artifact-free high dynamic range imaging. IEEE International Conference on Computer Photography (ICCP), April 2009

    Google Scholar 

  8. Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)

    Article  Google Scholar 

  9. Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H.P., Lensch, H.P.A.: Optimal HDR reconstruction with linear digital cameras. In: IEEE Conference on Computer Vision and Pattern Recogion (CVPR), pp. 215–222, June 2010

    Google Scholar 

  10. Grossberg, M.D., Nayar, S.K.: High dynamic range from multiple images: which exposures to combine?. In: ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV), October 2003

    Google Scholar 

  11. Heo, Y.S., Lee, K.M., Lee, S.U., Moon, Y., Cha, J.: Ghost-free high dynamic range imaging. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6495, pp. 486–500. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19282-1_39

    Chapter  Google Scholar 

  12. Hoefflinger, B. (ed.): High-Dynamic-Range (HDR) Vision. Springer, Heidelberg (2007)

    Google Scholar 

  13. Jacobs, K., Loscos, C., Ward, G.: Automatic high-dynamic range image generation for dynamic scenes. IEEE Comput. Graph. Appl. 28(2), 84–93 (2008)

    Article  Google Scholar 

  14. Loose, M., Meier, K., Schemmel, J.: A self-calibrating single-chip CMOS camera with logarithmic response. IEEE J. Solid-State Circuits 36(4), 586–596 (2001)

    Article  Google Scholar 

  15. Mäkitalo, M., Foi, A.: Noise parameter mismatch in variance stabilization, with an application to Poisson-Gaussian noise estimation. IEEE Trans. Image Process. 23(12), 5348–5359 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mann, S., Picard, R.W.: On being ‘undigital’ with digital cameras: extending dynamic range by combining differently exposed pictures. In: Proceedings of Imaging Science and Technology, pp. 442–448, May 1995

    Google Scholar 

  17. Mantiuk, R.K., Myszkowski, K., Seidel, H.P.: High dynamic range imaging. In: Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley (2015)

    Google Scholar 

  18. Nayar, S.K., Mitsunaga, T.: High dynamic range imaging: spatially varying pixel exposures. In: IEEE Conference on Computer Vision and Pattern Recogition (CVPR), June 2000

    Google Scholar 

  19. Robertson, M.A., Borman, S., Stevenson, R.L.: Estimation-theoretic approach to dynamic range enhancement using multiple exposures. Electron. Imaging 12(2), 219–228 (2003)

    Article  Google Scholar 

  20. Stumpfel, J., Tchou, C., Jones, A., Hawkins, T., Wenger, A., Debevec, P.: Direct HDR capture of the sun and sky. In: Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interact, in Africa. pp. 145–149. AFRIGRAPH 2004, November 2004

    Google Scholar 

  21. Tumblin, J., Agrawal, A., Raskar, R.: Why I want a gradient camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 103–110, June 2014

    Google Scholar 

  22. Zhao, H., Shi, B., Fernandez-Cull, C., Yeung, S.K., Raskar, R.: Unbounded high dynamic range photography using a modulo camera. In: International Conference on Computational Photography (ICCP), April 2015

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant agreement No. 307942.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Plötz .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 224 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lang, F., Plötz, T., Roth, S. (2017). Robust Multi-image HDR Reconstruction for the Modulo Camera. In: Roth, V., Vetter, T. (eds) Pattern Recognition. GCPR 2017. Lecture Notes in Computer Science(), vol 10496. Springer, Cham. https://doi.org/10.1007/978-3-319-66709-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66709-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66708-9

  • Online ISBN: 978-3-319-66709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics