Skip to main content

Robustness Among Multiwinner Voting Rules

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10504))

Included in the following conference series:

Abstract

We investigate how robust are results of committee elections to small changes in the input preference orders, depending on the voting rules used. We find that for typical rules the effect of making a single swap of adjacent candidates in a single preference order is either that (1) at most one committee member can be replaced, or (2) it is possible that the whole committee can be replaced. We also show that the problem of computing the smallest number of swaps that lead to changing the election outcome is typically \({\mathrm {NP}}\)-hard, but there are natural \({\mathrm {FPT}}\) algorithms. Finally, for a number of rules we assess experimentally the average number of random swaps necessary to change the election result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Indeed, the formal definition is more complex due to taking care of ties.

  2. 2.

    We also construct somewhat artificial rules with robustness levels between 1 and k.

  3. 3.

    We found STV to be computationally too intensive for our experiments, so we used a simplified variant where all internal ties are broken lexicographically. We omit NED for similar reasons (but we expect the results to be similar as for k-Copeland).

References

  1. Aziz, H., Elkind, E., Faliszewski, P., Lackner, M., Skowron, P.: The Condorcet principle for multiwinner elections: from shortlisting to proportionality. arXiv preprint arXiv:1701.08023 (2017)

  2. Barberà, S., Coelho, D.: How to choose a non-controversial list with \(k\) names. Soc. Choice Welf. 31(1), 79–96 (2008)

    Article  MathSciNet  Google Scholar 

  3. Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional representation. J. Artif. Intell. Res. 47, 475–519 (2013)

    Article  MathSciNet  Google Scholar 

  4. Blom, M., Stuckey, P., Teague, V.: Towards computing victory margins in STV elections. arXiv preprint arXiv:1703.03511 (2017)

  5. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., Talmon, N.: Robustness among multiwinner voting rules. arXiv preprint arXiv:1707.01417 (2017)

  6. Caragiannis, I., Hemaspaandra, E., Hemaspaandra, L.: Dodgson’s rule and Young’s rule. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  7. Cary, D.: Estimating the margin of victory for instant-runoff voting. Presented at EVT/WOTE-2011, August 2011

    Google Scholar 

  8. Chamberlin, B., Courant, P.: Representative deliberations and representative decisions: proportional representation and the Borda rule. Am. Polit. Sci. Rev. 77(3), 718–733 (1983)

    Article  Google Scholar 

  9. Coelho, D.: Understanding, evaluating and selecting voting rules through games and axioms. Ph.D. thesis, Universitat Autònoma de Barcelona (2004)

    Google Scholar 

  10. Conitzer, V., Rognlie, M., Xia, L.: Preference functions that score rankings and maximum likelihood estimation. In: Proceedings of IJCAI-2009, pp. 109–115, July 2009

    Google Scholar 

  11. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

    Book  Google Scholar 

  12. Elkind, E., Faliszewski, P., Skowron, P., Slinko, A.: Properties of multiwinner voting rules. Social Choice Welf. 48(3), 599–632 (2017)

    Article  MathSciNet  Google Scholar 

  13. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04645-2_27

    Chapter  Google Scholar 

  14. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Committee scoring rules: axiomatic classification and hierarchy. In: Proceedings of IJCAI-2016, pp. 250–256 (2016)

    Google Scholar 

  15. Gehrlein, W.: The Condorcet criterion and committee selection. Math. Soc. Sci. 10(3), 199–209 (1985)

    Article  MathSciNet  Google Scholar 

  16. Kaczmarczyk, A., Faliszewski, P.: Algorithms for destructive shift bribery. In: Proceedings of AAMAS-2016, pp. 305–313 (2016)

    Google Scholar 

  17. Kamwa, E.: On stable voting rules for selecting committees. J. Math. Econ. 70, 36–44 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lenstra Jr., H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  19. Lu, T., Boutilier, C.: Budgeted social choice: from consensus to personalized decision making. In: Proceedings of IJCAI-2011, pp. 280–286 (2011)

    Google Scholar 

  20. Magrino, T., Rivest, R., Shen, E., Wagner, D.: Computing the margin of victory in IRV elections. Presented at EVT/WOTE-2011, August 2011

    Google Scholar 

  21. Mattei, N., Walsh, T.: Preflib: a library for preferences. In: Proceedings of the 3rd International Conference on Algorithmic Decision Theory, pp. 259–270 (2013)

    Chapter  Google Scholar 

  22. McGarvey, D.: A theorem on the construction of voting paradoxes. Econometrica 21(4), 608–610 (1953)

    Article  MathSciNet  Google Scholar 

  23. Procaccia, A., Rosenschein, J., Zohar, A.: On the complexity of achieving proportional representation. Soc. Choice Welf. 30(3), 353–362 (2008)

    Article  MathSciNet  Google Scholar 

  24. Sekar, S. Sikdar., Xia, L.: Condorcet consistent bundling with social choice. In: Proceedings of AAMAS-2017, May 2017

    Google Scholar 

  25. Shiryaev, D., Yu, L., Elkind, E.: On elections with robust winners. In: Proceedings of AAMAS-2013, pp. 415–422 (2013)

    Google Scholar 

  26. Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings of EC-2012, pp. 982–999, June 2012

    Google Scholar 

Download references

Acknowledgments

We are grateful to anonymous SAGT reviewers for their useful comments. R. Bredereck was supported by the DFG fellowship BR 5207/2. P. Faliszewski was supported by the NCN, Poland, under project 2016/21/B/ST6/01509. A. Kaczmarczyk was supported by the DFG project AFFA (BR 5207/1 and NI 369/15). P. Skowron was supported by a Humboldt Fellowship. N. Talmon was supported by an I-CORE ALGO fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kaczmarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., Talmon, N. (2017). Robustness Among Multiwinner Voting Rules. In: Bilò, V., Flammini, M. (eds) Algorithmic Game Theory. SAGT 2017. Lecture Notes in Computer Science(), vol 10504. Springer, Cham. https://doi.org/10.1007/978-3-319-66700-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66700-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66699-0

  • Online ISBN: 978-3-319-66700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics