Advertisement

Online Random Sampling for Budgeted Settings

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10504)

Abstract

We study online multi-unit auctions in which each agent’s private type consists of the agent’s arrival and departure times, valuation function and budget. Similarly to secretary settings, the different attributes of the agents’ types are determined by an adversary, but the arrival process is random. We establish a general framework for devising truthful random sampling mechanisms for online multi-unit settings with budgeted agents. We demonstrate the applicability of our framework by applying it to different objective functions (revenue and liquid welfare), and a range of assumptions about the agents’ valuations (additive or general) and the items’ nature (divisible or indivisible). Our main result is the design of mechanisms for additive bidders with budget constraints that extract a constant fraction of the optimal revenue, for divisible and indivisible items (under a standard large market assumption). We also show a mechanism that extracts a constant fraction of the optimal liquid welfare for general valuations over divisible items.

Keywords

Random Sampling Mechanism Optimal Revenue Indivisible Items Agency Budgets Divisible Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrams, Z.: Revenue maximization when bidders have budgets. In: SODA, pp. 1074–1082. SIAM (2006)Google Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Meyerson, A.: Reducing truth-telling online mechanisms to online optimization. In: STOC, pp. 503–510. ACM (2003)Google Scholar
  3. 3.
    Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: SODA, pp. 434–443. SIAM (2007)Google Scholar
  4. 4.
    Babaioff, M., Immorlica, N., Lucier, Weinberg, S.M.: A simple and approximately optimal mechanism for an additive buyer. In: FOCS (2014)Google Scholar
  5. 5.
    Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-compatible online auctions for digital goods. In: SODA, pp. 964–970. SIAM (2002)Google Scholar
  6. 6.
    Blum, A., Hartline, J.D.: Near-optimal online auctions. In: SODA, pp. 1156–1163. SIAM (2005)Google Scholar
  7. 7.
    Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget-constrained bidders. In: EC, pp. 44–51. ACM (2005)Google Scholar
  8. 8.
    Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: STOC. ACM (2010)Google Scholar
  9. 9.
    Chawla, S., Malec, D.L., Malekian, A.: Bayesian mechanism design for budget-constrained agents. In: EC, pp. 253–262. ACM (2011)Google Scholar
  10. 10.
    Chawla, S., Malec, D.L., Sivan, B.: The power of randomness in Bayesian optimal mechanism design. Games Econ. Behav. 91, 297–317 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Devanur, N.R., Ha, B.Q., Hartline, J.D.: Prior-free auctions for budgeted agents. In: EC, pp. 287–304. ACM (2013)Google Scholar
  12. 12.
    Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. Games Econ. Behav. 74(2), 486–503 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dobzinski, S., Leme, R.P.: Efficiency guarantees in auctions with budgets. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 392–404. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43948-7_33CrossRefGoogle Scholar
  14. 14.
    Feldman, M., Fiat, A., Leonardi, S., Sankowski, P.: Revenue maximizing envy-free multi-unit auctions with budgets. In: EC, pp. 532–549. ACM (2012)Google Scholar
  15. 15.
    Fiat, A., Leonardi, S., Saia, J., Sankowski, P.: Single valued combinatorial auctions with budgets. In: EC, pp. 223–232. ACM (2011)Google Scholar
  16. 16.
    Friedman, E.J., Parkes, D.C.: Pricing WiFi at starbucks: issues in online mechanism design. In: EC, pp. 240–241. ACM (2003)Google Scholar
  17. 17.
    Goel, G., Mirrokni, V., Leme, R.P.: Clinching auctions with online supply. In: SODA, pp. 605–619. SIAM (2013)Google Scholar
  18. 18.
    Goldberg, A.V., Hartline, J.D., Karlin, A.R., Saks, M., Wright, A.: Competitive auctions. Games Econ. Behav. 55, 242–269 (2006). ElsevierMathSciNetCrossRefGoogle Scholar
  19. 19.
    Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: EC, pp. 71–80. ACM (2004)Google Scholar
  20. 20.
    Hajiaghayi, M.T., Kleinberg, R.D., Mahdian, M., Parkes, D.C.: Online auctions with re-usable goods. In: EC, pp. 165–174. ACM (2005)Google Scholar
  21. 21.
    Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. In: SODA, pp. 630–631. SIAM (2005)Google Scholar
  22. 22.
    Lavi, R., Nisan, N.: Competitive analysis of incentive compatible on-line auctions. In: EC, pp. 233–241. ACM (2000)Google Scholar
  23. 23.
    Lavi, R., Nisan, N.: Online ascending auctions for gradually expiring items. In: SODA, pp. 1146–1155. SIAM (2005)Google Scholar
  24. 24.
    Lu, P., Xiao, T.: Improved efficiency guarantees in auctions with budgets. In: EC 2015, Portland, OR, USA, 15–19 June 2015, pp. 397–413 (2015)Google Scholar
  25. 25.
    Parkes, D.C.: Online Mechanisms (2007)Google Scholar
  26. 26.
    Parkes, D.C., Singh, S.P.: An MDP-based approach to online mechanism design. In: NIPS (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentTel Aviv UniversityTel Aviv-YafoIsrael
  2. 2.Microsoft Research IsraelHerzliyaIsrael

Personalised recommendations