The Efficiency of Best-Response Dynamics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10504)


Best response (BR) dynamics is a natural method by which players proceed toward a pure Nash equilibrium via a local search method. The quality of the equilibrium reached may depend heavily on the order by which players are chosen to perform their best response moves. A deviator rule S is a method for selecting the next deviating player. We provide a measure for quantifying the performance of different deviator rules. The inefficiency of a deviator rule S with respect to an initial strategy profile p is the ratio between the social cost of the worst equilibrium reachable by S from p and the social cost of the best equilibrium reachable from p. The inefficiency of S is the maximum such ratio over all possible initial profiles. This inefficiency always lies between 1 and the price of anarchy.

We study the inefficiency of various deviator rules in network formation games and job scheduling games (both are congestion games, where BR dynamics always converges to a pure NE). For some classes of games, we compute optimal deviator rules. Furthermore, we define and study a new class of deviator rules, called local deviator rules. Such rules choose the next deviator as a function of a restricted set of parameters, and satisfy a natural independence condition called independence of irrelevant players. We present upper bounds on the inefficiency of some local deviator rules, and also show that for some classes of games, no local deviator rule can guarantee inefficiency lower than the price of anarchy.


Congestion games Best-response dynamics Deviator rules Price of anarchy 


  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alon, N., Demaine, E.D., Hajiaghayi, M., Leighton, T.: Basic network creation games. In: Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms and Architectures, pp. 106–113 (2010)Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objectives. J. Inf. Comput. 251, 165–178 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Avni, G., Tamir, T.: Cost-sharing scheduling games on restricted unrelated machines. Theor. Comput. Sci. 646, 26–39 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berger, N., Feldman, M., Neiman, O., Rosenthal, M.: Dynamic inefficiency: anarchy without stability. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 57–68. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24829-0_7CrossRefGoogle Scholar
  7. 7.
    Chen, B., Gürel, S.: Efficiency analysis of load balancing games with and without activation costs. J. Sched. 15(2), 157–164 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, H., Roughgarden, T.: Network design with weighted players. Theory Comput. Syst. 45(2), 302–324 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Durand, S., Gaujal, B.: Complexity and optimality of the best response algorithm in random potential games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 40–51. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53354-3_4CrossRefGoogle Scholar
  10. 10.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003). doi: 10.1007/3-540-45061-0_41CrossRefGoogle Scholar
  11. 11.
    Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings of SODA, pp. 772–781 (2005)Google Scholar
  12. 12.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: Proceedings of PODC, pp. 347–351 (2003)Google Scholar
  13. 13.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of STOC, pp. 604–612 (2004)Google Scholar
  14. 14.
    Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. J. Oper. Res. 60(3), 529–540 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Feldman, M., Tamir, T.: Convergence of best-response dynamics in games with conflicting congestion effects. Inf. Process. Lett. 115(2), 112–118 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fotakis, D.: Congestion games with linearly independent paths: convergence time and price of anarchy. Theory Comput. Syst. 47(1), 113–136 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. Math. Oper. Res. 37(3), 419–436 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ieong, S., Mcgrew, R., Nudelman, E., Shoham, Y., Sun, Q., Fast, C.: A simple class of congestion games. In: Proceedinhgs of AAAI, pp. 489–494 (2005)Google Scholar
  19. 19.
    Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: Proceedings of SPAA, pp. 83–92 (2013)Google Scholar
  20. 20.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (1999)CrossRefGoogle Scholar
  21. 21.
    Milchtaich, I.: Congestion games with player specific payoff functions. Games Econ. Behav. 13, 111–124 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proceedings of 33rd STOC, pp. 749–753 (2001)Google Scholar
  24. 24.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Syrgkanis, V.: The complexity of equilibria in cost sharing games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 366–377. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17572-5_30CrossRefGoogle Scholar
  26. 26.
    Vöcking, B.: Selfish load balancing (Chap. 20). In: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer ScienceTel-Aviv UniversityTel AvivIsrael
  2. 2.School of Computer ScienceThe Interdisciplinary CenterHerzliyaIsrael

Personalised recommendations