Selfish Network Creation with Non-uniform Edge Cost

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10504)


Network creation games investigate complex networks from a game-theoretic point of view. Based on the original model by Fabrikant et al. [PODC’03] many variants have been introduced. However, almost all versions have the drawback that edges are treated uniformly, i.e. every edge has the same cost and that this common parameter heavily influences the outcomes and the analysis of these games.

We propose and analyze simple and natural parameter-free network creation games with non-uniform edge cost. Our models are inspired by social networks where the cost of forming a link is proportional to the popularity of the targeted node. Besides results on the complexity of computing a best response and on various properties of the sequential versions, we show that the most general version of our model has constant Price of Anarchy. To the best of our knowledge, this is the first proof of a constant Price of Anarchy for any network creation game.


  1. 1.
    Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation game. ACM TEAC 2(1), 2 (2014)zbMATHGoogle Scholar
  2. 2.
    Alon, N., Demaine, E.D., Hajiaghayi, M.T., Leighton, T.: Basic network creation games. SIAM J. Discret. Math. 27(2), 656–668 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Àlvarez, C., Blesa, M.J., Duch, A., Messegué, A., Serna, M.: Celebrity games. Theor. Comput. Sci. 648, 56–71 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Àlvarez, C., Messeguè, A.: Max celebrity games. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 88–99. Springer, Cham (2016). doi: 10.1007/978-3-319-49787-7_8CrossRefGoogle Scholar
  5. 5.
    Bala, V., Goyal, S.: A noncooperative model of network formation. Econometrica 68(5), 1181–1229 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  7. 7.
    Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Locality-based network creation games. In: SPAA 2014, pp. 277–286. ACM, New York (2014)Google Scholar
  8. 8.
    Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Network creation games with traceroute-based strategies. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 210–223. Springer, Cham (2014). doi: 10.1007/978-3-319-09620-9_17CrossRefGoogle Scholar
  9. 9.
    Chauhan, A., Lenzner, P., Melnichenko, A., Molitor, L.: Selfish network creation with non-uniform edge cost (2017). arXiv preprint arXiv:1706.10200
  10. 10.
    Corbo, J., Parkes, D.: The price of selfish behavior in bilateral network formation. In: PODC 2005, pp. 99–107. ACM, New York (2005)Google Scholar
  11. 11.
    Cord-Landwehr, A., Lenzner, P.: Network creation games: think global – act local. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 248–260. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48054-0_21CrossRefGoogle Scholar
  12. 12.
    Cord-Landwehr, A., Mäcker, A., auf der Heide, F.M.: Quality of service in network creation games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 423–428. Springer, Cham (2014). doi: 10.1007/978-3-319-13129-0_34CrossRefGoogle Scholar
  13. 13.
    Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: The price of anarchy in network creation games. ACM Trans. Algorithms 8(2), 13 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: PODC 2003, pp. 347–351. ACM, New York (2003)Google Scholar
  15. 15.
    Graham, R., Hamilton, L., Levavi, A., Loh, P.-S.: Anarchy is free in network creation. ACM Trans. Algorithms (TALG) 12(2), 15 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. J. Econ. Theory 71(1), 44–74 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: SPAA 2013, pp. 83–92. ACM (2013)Google Scholar
  18. 18.
    Lenzner, P.: On dynamics in basic network creation games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 254–265. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24829-0_23CrossRefGoogle Scholar
  19. 19.
    Lenzner, P.: Greedy selfish network creation. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 142–155. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35311-6_11CrossRefGoogle Scholar
  20. 20.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: SIGKDD 2005, pp. 177–187. ACM (2005)Google Scholar
  21. 21.
    Mamageishvili, A., Mihalák, M., Müller, D.: Tree Nash equilibria in the network creation game. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 118–129. Springer, Cham (2013). doi: 10.1007/978-3-319-03536-9_10CrossRefzbMATHGoogle Scholar
  22. 22.
    Meirom, E.A., Mannor, S., Orda, A.: Network formation games with heterogeneous players and the internet structure. In: EC 2014, pp. 735–752. ACM (2014)Google Scholar
  23. 23.
    Mihalák, M., Schlegel, J.C.: The price of anarchy in network creation games is (mostly) constant. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 276–287. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16170-4_24CrossRefGoogle Scholar
  24. 24.
    Mihalák, M., Schlegel, J.C.: Asymmetric swap-equilibrium: a unifying equilibrium concept for network creation games. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 693–704. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32589-2_60CrossRefGoogle Scholar
  25. 25.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, pp. 749–753 (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Algorithm Engineering GroupHasso Plattner InstitutePotsdamGermany

Personalised recommendations