Advertisement

The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10504)

Abstract

We show that for several solution concepts for finite n-player games, where \(n \ge 3\), the task of simply verifying its conditions is computationally equivalent to the decision problem of the existential theory of the reals. This holds for trembling hand perfect equilibrium, proper equilibrium, and CURB sets in strategic form games and for (the strategy part of) sequential equilibrium, trembling hand perfect equilibrium, and quasi-perfect equilibrium in extensive form games. For obtaining these results we first show that the decision problem for the minmax value in n-player games, where \(n\ge 3\), is also equivalent to the decision problem for the existential theory of the reals.

Our results thus improve previous results of \(\mathrm {NP}\)-hardness as well as \(\textsc {Sqrt-Sum}\)-hardness of the decision problems to completeness for \(\exists \mathbb {R}\), the complexity class corresponding to the decision problem of the existential theory of the reals. As a byproduct we also obtain a simpler proof of a result by Schaefer and Štefankovič giving \(\exists \mathbb {R}\)-completeness for the problem of deciding existence of a probability constrained Nash equilibrium.

References

  1. 1.
    Basu, K., Weibull, J.W.: Strategy subsets closed under rational behavior. Econ. Lett. 36(2), 141–146 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benisch, M., Davis, G.B., Sandholm, T.: Algorithms for rationalizability and CURB sets. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence, pp. 598–604. AAAI Press (2006)Google Scholar
  3. 3.
    Bilò, V., Mavronicolas, M.: A catalog of \(\exists \mathbb{R}\)-complete decision problems about Nash equilibria in multi-player games. In: Ollinger, N., Vollmer, H. (eds.) STACS 2016. LIPIcs, vol. 47, p. 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  4. 4.
    Blömer, J.: Computing sums of radicals in polynomial time. In: 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991), pp. 670–677. IEEE Computer Society Press (1991)Google Scholar
  5. 5.
    Borgs, C., Chayes, J., Immorlica, N., Kalai, A.T., Mirrokni, V., Papadimitriou, C.: The myth of the folk theorem. Games Econ. Behav. 70(1), 34–43 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bubelis, V.: On equilibria in finite games. Int. J. Game Theor. 8(2), 65–79 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bürgisser, P., Cucker, F.: Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math. 9(2), 135–170 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 460–467. ACM (1988)Google Scholar
  10. 10.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272. IEEE Computer Society Press (2006)Google Scholar
  11. 11.
    Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games Econ. Behav. 63(2), 621–641 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van Damme, E.: A relation between perfect equilibria in extensive form games and proper equilibria in normal form games. Int. J. Game Theor. 13, 1–13 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Datta, R.S.: Universality of Nash equilibria. Math. Oper. Res. 28(3), 424–432 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Etessami, K., Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The complexity of approximating a trembling hand perfect equilibrium of a multi-player game in strategic form. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 231–243. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44803-8_20CrossRefzbMATHGoogle Scholar
  16. 16.
    Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Garg, J., Mehta, R., Vazirani, V.V., Yazdanbod, S.: ETR-completeness for decision versions of multi-player (symmetric) Nash equilibria. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 554–566. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47672-7_45CrossRefGoogle Scholar
  18. 18.
    Gatti, N., Panozzo, F.: New results on the verification of Nash refinements for extensive-form games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 813–820. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  19. 19.
    Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games Econ. Behav. 1(1), 80–93 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grigor’Ev, D.Y., Vorobjov, N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5(1–2), 37–64 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hansen, K.A., Hansen, T.D., Miltersen, P.B., Sørensen, T.B.: Approximability and parameterized complexity of minmax values. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 684–695. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-92185-1_74CrossRefGoogle Scholar
  22. 22.
    Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 198–209. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16170-4_18CrossRefGoogle Scholar
  23. 23.
    Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894 (1982)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theor. 15, 133–154 (1978)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nash, J.: Non-cooperative games. Ann. Math. 2(54), 286–295 (1951)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11805-0_32CrossRefGoogle Scholar
  27. 27.
    Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, Heidelberg (2013). doi: 10.1007/978-1-4614-0110-0_24CrossRefGoogle Scholar
  28. 28.
    Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential theory of the reals. Theor. Comput. Syst. 60(2), 172–193 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Selten, R.: A reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theor. 4, 25–55 (1975)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry And Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554. DIMACS/AMS (1990)Google Scholar
  31. 31.
    van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  32. 32.
    Vorob’ev, N.N.: Estimates of real roots of a system of algebraic equations. J. Sov. Math. 34(4), 1754–1762 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Aarhus UniversityAarhusDenmark

Personalised recommendations