Skip to main content

Biomechanical Approach for the Development and Simulation of a Musculoskeletal Model of the Ankle

  • Conference paper
  • First Online:
Design and Modeling of Mechanical Systems—III (CMSM 2017)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 1899 Accesses

Abstract

Estimation of individual muscle forces during human movement can provide insight into neural control and tissue loading and can thus contribute to improved diagnosis and management of both neurological and orthopaedic conditions. Direct measurement of muscle forces is generally not feasible in a clinical setting, and non-invasive methods based on musculoskeletal modeling should, therefore, be considered. The current state of the art in clinical movement analysis is that resultant joint torques can be reliably estimated from motion data and external forces (inverse dynamic analysis). The purpose of this paper consists in developing and simulating a biomechanical model of the lower limb, more precisely, of the foot during its movement. In this paper, we are interested in the calculation of the ankle joint. First, we have studied the muscular length variation as a function of the variation of the flexion angle. Then, we focus on the determination of the muscular force produced by muscles and involved in the flexion movement and the foot extension. Finally, we have cited the findings and the interpretations appropriate to the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badr ME (2013) Les arthrodèses de la cheville (A propos de 08 cas). Thèse de doctorat de l’universitĂ© sidi Mohammed Benabdellah facultĂ© de mĂ©decine et de pharmacie

    Google Scholar 

  • Bernard B (2005) Introduction Ă  la Robotique. Cours Ă  UniversitĂ© Louis Pasteur de Strasbourg ´ IUP Technologies AvancĂ©es des Sciences du Vivant

    Google Scholar 

  • Chalfoun J, Renault M, Younes R, Ouezdou FB (2004) Muscle forces prediction of the human hand and forearm system in highly realistic simulation. Iros, Japan

    Book  MATH  Google Scholar 

  • Gong C, Peng Q, Zhao G, Haoyong Y (2016) Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation. Mech Mach Theor 103:51–64

    Article  Google Scholar 

  • Guillaume N (2010) Des donnĂ©es anatomiques Ă  la simulation de la locomotion bipède: Application Ă  l’Homme, au ChimpanzĂ©, et Ă  Lucy. Thèse de doctorat de l’universitĂ© Renne 2

    Google Scholar 

  • Joe C (2005) PrĂ©diction des efforts musculaires dans le système main avant-bras: ModĂ©lisation, simulation, optimisation et validation. Thèse de doctorat de l’universitĂ© de Versailles Saint-Quentin-en-Yvelines

    Google Scholar 

  • Riener R, Frey M, Bernhardt M, Nef T, Colombo G (2005) Human centred rehabilitation robotics. IEEE International Conference in Rehabilitation Robotics, pp. 319–324

    Google Scholar 

  • Rochcongar P (2004) Evaluation isocinĂ©tique des extenseurs et flĂ©chisseurs du ge-nou en mĂ©decine du sport: revue de la littĂ©rature. Anales de rĂ©adaptation et de mĂ©decine physique 47:274–281

    Google Scholar 

  • Sami B (2012) Contribution au DĂ©veloppement d’une Plateforme RobotisĂ©e pour la RĂ©Ă©ducation Fonctionnelle. Thèse de doctorat de l’École Nationale d’IngĂ©nieurs de Monastir

    Google Scholar 

  • Seddiki L, Guelton K, Moughamir S, Mansouri B, Zaytoon J (2007) ModĂ©lisation T-S et commande Hinf d’une machine de rĂ©Ă©ducation des membres infĂ©rieurs. Journal EuropĂ©en des Systèmes AutomatisĂ©s, RSJESA 41(2):199–218

    Article  Google Scholar 

  • Serdar G, Andreas M, Ellen K (2014) The generalized Hill model: A kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39

    Article  MathSciNet  MATH  Google Scholar 

  • Scott SH, Winter DA (1991) A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force. J Biomech 24:163–167

    Article  Google Scholar 

  • Viel E, Esnault M (2003) RĂ©cupĂ©ration du sportif blessĂ©. De la rĂ©Ă©ducation en chaĂ®ne fermĂ©e au stretching en chaĂ®ne musculaires, Edition Masson

    Google Scholar 

  • Williams II RL, Snyder B, Albus JS, Bolstelman RV (2004) Seven- DOF cable-suspended robot with independent metrology. Comptes rendus – ASME IDETC/CIE Mech. and Robotics Conference, (Salt Lake City, États-Unis)

    Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement. Wiley Inters. Publ., 4th Ed., New York, 143p

    Google Scholar 

  • Zabaleta H, Bureau M, Eizmendi G, Olaiz E, Medina J (2007) Perez M (2007) Exoskeleton design for functional rehabilitation in patients with neurological dis-orders and stroke. Reh. Robotics, IEEE ICORR

    Google Scholar 

  • Zajac FE (1989a) Determining muscle’s force and action in multi-articular movement. Exercise and Sport Siences Reviews 17:187–230

    Google Scholar 

  • Zajac FE (1989b) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411

    Google Scholar 

  • Zhu Y, Chen JX, Xiao S (1999) 3D knee modelling and biomechanical simulation. Comput Sci Eng 82–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Romdhane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ederguel, E., Bennour, S., Romdhane, L. (2018). Biomechanical Approach for the Development and Simulation of a Musculoskeletal Model of the Ankle. In: Haddar, M., Chaari, F., Benamara, A., Chouchane, M., Karra, C., Aifaoui, N. (eds) Design and Modeling of Mechanical Systems—III. CMSM 2017. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-66697-6_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66697-6_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66696-9

  • Online ISBN: 978-3-319-66697-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics