Skip to main content

Glutathione as a Key Player in Plant Abiotic Stress Responses and Tolerance

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Adverse environmental conditions, such as drought, salinity, high temperature, and toxic metal accumulation, affect plant growth and fitness. Plants have evolved a number of interconnected molecular pathways to defend themselves against different abiotic stresses. In these metabolic networks, redox signaling plays a pivotal role in determining plant tolerance to stress and survival. Glutathione/glutathione disulfide is one of the most versatile redox couples in metabolism. It directly or indirectly buffers the cellular redox state, by acting as enzyme cofactor, controlling the oxido-reduction of other thiols and participating in post-translational protein modifications under both physiological and stress conditions. Glutathione also plays a key role as a conjugating agent in detoxification against xenobiotics or metabolites which need to be sequestered within the vacuole. Glutathione also acts as a signal controlling gene expression and cell cycle progression. These features highlight the importance of glutathione in regulating plant growth and development as well as in conferring tolerance to plants subjected to stress. This chapter describes the involvement of this multifaceted molecule in plant abiotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, the acronym GSH indicates the thiol (reduced) form of glutathione, while GSSG indicates the disulfide (oxidized) form. When the term “glutathione” is used, no distinction is made between the two forms or it refers to the whole GSH/GSSG pool.

References

  • Akter N, Sobahan MA, Uraji M, Ye W, Hossain MA, Mori IC et al (2012) Effects of depletion of glutathione on abscisic acid and methyl jasmonate induced stomata closure in Arabidopsis thaliana. Biosci Biotechnol Biochem 76:2032–2037

    Article  CAS  PubMed  Google Scholar 

  • Akter N, Okuma E, Sobahan MA, Uraji M, Munemasa S, Nakamura Y et al (2013) Negative regulation of methyl jasmonate-induced stomatal closure by glutathione in Arabidopsis. J Plant Growth Regul 32:208–215

    Article  CAS  Google Scholar 

  • Alloway BJ (2012) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils. Springer, Heidelberg, pp 15–50

    Google Scholar 

  • Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A et al (2015a) Too much is bad–an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382

    Article  CAS  Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, MAM R, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I (2015b) Jacks of metal/metalloid chelation trade on plants-an overview. Front Plant Sci 6:192

    PubMed  PubMed Central  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Sanità di Toppi L, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings overexpressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Google Scholar 

  • Centomani I, Sgobba A, D’Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC (2015) Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. Protoplasma 252:1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three brassica species. J Exp Bot 67(15):4611–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Liu Y, Cao S (2016) Zinc-finger transcription factor ZAT6positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171(1):707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G, Karunakaran R, East AK, Munoz-Azcarate O, Poole PS (2017) Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnx045

  • Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal Phytotoxicity. Front Plant Sci 7:470

    Article  PubMed  PubMed Central  Google Scholar 

  • De Gara L, Locato V, Dipierro S, de Pinto MC (2010) Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Resp Physiol Neurobiol 173:S13–S19

    Article  Google Scholar 

  • de Pinto MC, Locato V, Sgobba A, Romero-Puertas Mdel C, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775

    Article  PubMed  PubMed Central  Google Scholar 

  • de Pinto MC, Locato V, Paradiso A, De Gara L (2015) Role of redox homeostasis in thermo-tolerance under a climate change scenario. Ann Bot 116:487–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single channel properties, genetic basis and involvement in stress-induced cell death. J CellSci 123:1468–1479

    CAS  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin VJ (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65(5):1259–1270

    Article  CAS  PubMed  Google Scholar 

  • Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Dong Y-P, Ziegler K, Markovic J, Pallardó F, Pellny TK, Verrier P, Foyer CH (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  Google Scholar 

  • Dinler BS, Antoniou C, Fotopoulos V (2014) Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. J Plant Physiol 171(18):1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Davies BG, Edwards E (2002) Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem 277:30859–30869

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  • Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G (1997) Plant glutathione peroxidases. Physiol Plant 100:234–240

    Article  CAS  Google Scholar 

  • Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63

    Article  CAS  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Cáceres ML, Hattab S, Hattab S, Boussetta H, Banni M, Hernández LE (2015) Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. Plant Sci 233:165–173

    Article  PubMed  Google Scholar 

  • Gallie DR (2013) The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) A glutathione responsive rice glyoxalase II,OsGLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and antioxidant pool. Plant J 80:93–105

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Kushwaha HR, Hasan MR, Pareek A, Sopory SK, Singla-Pareek SL (2016) Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification. Sci Rep 6:18358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541

    Article  CAS  PubMed  Google Scholar 

  • Guan C, Ji J, Jia C, Guan W, Li X, Jin C, Wang G (2015) A GSHS-like gene from Lycium chinense may be regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. Plant Cell Rep 34(5):871–884

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics:701596. 18 pages

    Google Scholar 

  • Hasan MK, Liu C, Wang F, Ahammed GJ, Zhou J, Xu MX, Yu JQ, Xia XJ (2016) Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato. Chemosphere 161:536–545

    Article  CAS  PubMed  Google Scholar 

  • He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo ZB (2015) Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205(1):240–254

    Article  CAS  PubMed  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66(10):2901–2911

    Article  PubMed  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain J, Chen J, Locato V, Sabetta W, Behera S, Cimini S, Griggio F, Martínez-Jaime S, Graf A, Bouneb M, Pachaiappan R, Fincato P, Blanco E, Costa A, De Gara L, Bellin D, de Pinto MC, Vandelle E (2016) Constitutive cyclic GMP accumulation in Arabidopsis Thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Sci Rep 6:36423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innocenti G, Pucciariello C, LeGleuher M, Hopkins J, de Stefano M, Delledonne M et al (2007) Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta 225:1597–1602

    Article  CAS  PubMed  Google Scholar 

  • Islam T, Manna M, Reddy MK (2015) Glutathione peroxidase of Pennisetum Glaucum (PgGPx) is a functional Cd2+dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS One 10(11):e0143344

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahan MS, Ogawa K, Nakamura Y, Shimoishi Y, Mori IC, Murata Y (2008) Deficient glutathione in guard cells facilitates abscisic acid-induced stomatal closure but does not affect light-induced stomatal opening. Biosci Biotechnol Biochem 72:2795–2798

    Article  CAS  PubMed  Google Scholar 

  • Jahan MS, Nozulaidi M, Khairi M, Mat N (2016) Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. J Plant Physiol 195:1–8 

    Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  • Jespersen HM, Kjaersgard IVH, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jozefczak M, Bohler S, Schat H, Horemans N, Guisez Y, Remans T, Vangronsveld J, Cuypers A (2015) Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of Arabidopsis to cadmium. Ann Bot 116(4):601–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Jubany-Mari T, Alegre-Batlle L, Jiang K, Feldman LJ (2010) Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Lett 584:889–897

    Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecule, big impact. Front Plant Sci 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DL, Monde R-A, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koffler BE, Polanschütz L, Zechmann B (2014) Higher sensitivity of pad2-1 and vtc2-1 mutants to cadmium is related to lower subcellular glutathione rather than ascorbate contents. Protoplasma 251(4):755–769

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Google Scholar 

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of cd, Zn and cu alone or in combination. PLoS One 10(6):e0128824

    Google Scholar 

  • Locato V, de Pinto MC, De Gara L (2009) Different involvement of the mitochondrial, plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses. Physiol Plant 135(3):296–306

    Article  CAS  PubMed  Google Scholar 

  • Locato V, Cimini S, De Gara L (2013) Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front Plant Sci 4:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Locato V, Novo Uzal E, Cimini S, Zonno MC, Evidente A, Micera A, Foyer CH, De Gara L (2015) Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. J Exp Bot 66:2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Locato V, Paradiso A, Sabetta W, De Gara L, de Pinto MC (2016) Nitric oxide and reactive oxygen species in PCD signaling. Adv Bot Res 77:165–192

    Article  CAS  Google Scholar 

  • Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317

    Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Müller C (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci USA 107:2331–2336

    Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signalling pathways. Plant Physiol 153:1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills GC (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229:189–197

    CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A (2003) OsGSTU3 and OsGSTU4, encoding tau class glutathione S-transferases, are heavy metal and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Muroyama D, Nagahashi H, Nakamura Y, Mori IC, Murata Y (2013) Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Front Plant Sci 4:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Suzui N, Nagasaka T, Komatsu F, Ishioka NS, Ito-Tanabata S, Kawachi N, Rai H, Hattori H, Chino M, Fujimaki S (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64(4):1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3plants: a predominant role for photorespiration? Ann Bot 89(7):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. The Arabidopsis Book 9:e0142. https://doi.org/10.1043/tab.0142. Elocation-id: e0142

    Article  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Márquez-García B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Okuma E, Jahan MS, Munemasa S, Hossain MA, Muroyama D, Islam MM, Ogawa K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Mori IC, Murata Y (2011) Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. J Plant Physiol 168:2048–2055

    Google Scholar 

  • Paradiso A, Berardino R, de Pinto MC, Sanità di Toppi L, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49(3):362–374

    Article  CAS  PubMed  Google Scholar 

  • Passaia G, Margis-Pinheiro M (2015) Glutathione peroxidases as redox sensor proteins in plant cells. Plant Sci 234:22–26

    Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2006) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance in Arabidopsis. Plant J 49:159–172

    Article  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pilarska M, Wiciarz M, Jaji’c I, Kozieradzka-Kiszkurno M, Dobrev P, Vanková R, Niewiadomska E (2016) A different pattern of production and scavenging of reactive oxygen species in halophytic Eutrema salsugineum (Thellungiella salsuginea) plants in comparison to Arabidopsis thaliana and its relation to salt stress signaling. Front Plant Sci 7:1179

    Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34:21–32

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR et al (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth C, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K et al (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35:334–346

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Sahoo A, Devendran R, Jain M (2014) Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One 9:e92900

    Article  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Reddy M, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100:14672–14677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy M, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Sirichandra C, Gu D, Hu HC et al (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72(4):585–599

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen F, Cai Y, Zhang G, Wu F (2011) Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol Trace Elem Res 144(1-3):1275–1288

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A 112(2):613–618

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jin X, Li Q, Wang X, Li Z, Wu X (2016) Comparative proteomics reveals that phosphorylation of β carbonic anhydrase 1might be important for adaptation to drought stress in Brassica napus. Sci Rep 6:39024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Xing X-J, Tian Y-S, Peng R-H, Xue Y, Zhao W et al (2015) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10(9):e0136960

    Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337:61–67

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi C, Takimoto Y, Ohkama-Ohtsu N, Hokura A, Shinano T, Nakamura T, Suyama A, Maruyama-Nakashita A (2016) Effects of cadmium treatment on the uptake and translocation of sulfate in Arabidopsis thaliana. Plant Cell Physiol 57(11):2353–2366

    Google Scholar 

  • Yang J, Gao MX, Hu H, Ding XM, Lin HW, Wang L, Xu JM, Mao CZ, Zhao FJ, Wu ZC (2016) OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211(2):658–670

    Article  CAS  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14(4):7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahedi Avval F, Holmgren A (2009) A molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase. J Biol Chem 284:8233–8240

    Article  PubMed  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhan Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang Y, Yang H, Wang W, Wu J, Hu X (2016) Quantitative proteomic analyses identify ABA-related proteins and signal pathways in maize leaves under drought conditions. Front Plant Sci 7:1827

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from the Ministero dell’Istruzione dell’Università e della Ricerca PRIN n. 20153NM8RM

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittoria Locato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Locato, V., Cimini, S., De Gara, L. (2017). Glutathione as a Key Player in Plant Abiotic Stress Responses and Tolerance. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_6

Download citation

Publish with us

Policies and ethics