Advertisement

Semantic Knowledge Engineering Approach

  • Grzegorz J. Nalepa
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 130)

Abstract

In this chapter we introduce the Semantic Knowledge Engineering approach. It is a development approach for Knowledge-based Systems that uses rule-based knowledge representation. The core of the approach is the formalized rule representation method XTT. The motivation for the approach, along with its distinctive features are given. Then the SKE design process for rule-based systems is presented. SKE was developed to support a heterogeneous architecture of rule-based applications. The approach is well supported by a number of discussed software tools for knowledge base design, generation of the executable rule format, and execution of the rule-based system. Furthermore, tools for rule analysis are discussed.

References

  1. 1.
    Atzmueller, M., Nalepa, G.J.: A textual subgroup mining approach for rapid ARD+ model capture. In: Lane, H.C., Guesgen, H.W. (eds.) FLAIRS-22: Proceedings of the Twenty-Second International Florida Artificial Intelligence Research Society conference: 19–21 May 2009, Sanibel Island, Florida, USA, Menlo Park, California, FLAIRS, pp. 414–415. AAAI Press (2009)Google Scholar
  2. 2.
    OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Technical Report dtc/06-03-02, Object Management Group (2006)Google Scholar
  3. 3.
    Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture, 1st edn. Addison-Wesley Professional (2002)Google Scholar
  4. 4.
    Burbeck, S.: Applications programming in Smalltalk-80(TM): How to use Model-View-Controller (MVC). Technical report, Department of Computer Science, University of Illinois, Urbana-Champaign (1992)Google Scholar
  5. 5.
    Hayes-Roth, B.: A blackboard architecture for control. Artif. Intell. 26(3), 251–321 (1985)CrossRefGoogle Scholar
  6. 6.
    Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture (SOA) Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press (2006)Google Scholar
  7. 7.
    Kaczor, K., Nalepa, G.J.: HaDEs - presentation of the HeKatE design environment. In: Baumeister, J., Nalepa, G.J. (eds.) 5th Workshop on Knowledge Engineering and Software Engineering (KESE2009) at the 32nd German Conference on Artificial Intelligence: September 15, 2009, Paderborn, Germany, pp. 57–62 (2009)Google Scholar
  8. 8.
    Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach. Wydawnictwa AGH, Kraków (2011)Google Scholar
  9. 9.
    Nalepa, G.J., Ligęza, A., Kaczor, K., Furmańska, W.T.: HeKatE rule runtime and design framework. In: Giurca, A., Nalepa, G.J., Wagner, G. (eds.) Proceedings of the 3rd East European Workshop on Rule-Based Applications (RuleApps 2009) September 21, 2009, Cottbus, Germany, pp. 21–30 (2009)Google Scholar
  10. 10.
    Nalepa, G.J., Wojnicki, I.: XML-based knowledge translation methods for XTT-based expert systems. In: Tadeusiewicz, R., Ligęza, A., Szymkat, M. (eds.) CMS’07: Computer Methods and Systems 21–23 November 2007, Kraków, Poland, AGH University of Science and Technology, Cracow, Oprogramowanie Naukowo-Techniczne, pp. 77–82 (2007)Google Scholar
  11. 11.
    Nalepa, G.J., Wojnicki, I.: VARDA rule design and visualization tool-chain. In: Dengel, A.R., et al. (eds.) KI 2008: Advances in Artificial Intelligence: 31st Annual German Conference on AI, KI 2008: Kaiserslautern, Germany, September 23–26, 2008. Lecture Notes in Artificial Intelligence, vol. 5243, pp. 395–396. Springer, Berlin (2008)Google Scholar
  12. 12.
    Nalepa, G.J., Wojnicki, I.: Hierarchical rule design with HaDEs the HeKatE toolchain. In: Ganzha, M., Paprzycki, M., Pelech-Pilichowski, T. (eds.) Proceedings of the International Multiconference on Computer Science and Information Technology, vol. 3, pp. 207–214. Polish Information Processing Society (2008)Google Scholar
  13. 13.
    Kaczor, K., Nalepa, G.J.: Design and implementation of HQEd, the visual editor for the XTT+ rule design method. Technical Report CSLTR 02/2008, AGH University of Science and Technology (2008)Google Scholar
  14. 14.
    Kaczor, K., Nalepa, G.J.: Extensible design and verification enviroment for XTT rule bases. In: Tadeusiewicz, R., Ligęza, A., Mitkowski, W., Szymkat, M. (eds.) CMS’09: Computer Methods and Systems: 7th conference, 26–27 November 2009, Kraków, Poland, Cracow, AGH University of Science and Technology, Cracow, Oprogramowanie Naukowo-Techniczne, pp. 99–104 (2009)Google Scholar
  15. 15.
    Nalepa, G.J., Bobek, S., Gawędzki, M., Ligęza, A.: HeaRT Hybrid XTT2 rule engine design and implementation. Technical Report CSLTR 4/2009, AGH University of Science and Technology (2009)Google Scholar
  16. 16.
    Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L. et al. (eds.) Artificial Intelligence and Soft Computing: 10th International Conference, ICAISC 2010: Zakopane, Poland, June 13–17, 2010, Pt. II. Lecture Notes in Artificial Intelligence, vol. 6114, pp. 598–605. Springer (2010)Google Scholar
  17. 17.
    Bobek, S., Nalepa, G.J., Babiarz, P.: Web-based edtitor for structured rule bases. In: Rutkowski, L., et al. (eds.) ICAISC 2017 Proceedings. LNCS, Springer (2017)Google Scholar
  18. 18.
    Szostek-Janik, J.: Translations of knowledge representations for rule-based systems. AGH University of Science and Technology. MSc Thesis (2008)Google Scholar
  19. 19.
    Kluza, K., Nalepa, G.J., Łysik, Ł.: Visual inference specification methods for modularized rulebases. Overview and integration proposal. In: Nalepa, G.J., Baumeister, J. (eds.) Proceedings of the 6th Workshop on Knowledge Engineering and Software Engineering (KESE6) at the 33rd German Conference on Artificial Intelligence September 21, 2010, Karlsruhe, Germany, pp. 6–17 (2010)Google Scholar
  20. 20.
    Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-based business rules. Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 22(4), 485–524 (2012)CrossRefGoogle Scholar
  21. 21.
    Denvir, T., Oliveira, J., Plat, N.: The cash-point (ATM) ‘Problem’. Form. Asp. Comput. 12(4), 211–215 (2000)CrossRefGoogle Scholar
  22. 22.
    Poizat, P., Royer, J.C.: Kadl specification of the cash point case study. Technical report, IBISC, FRE 2873 CNRS - Universite d’Evry Val d’Essonne, France, Genopole Tour Evry 2, 523 place des terrasses de l’Agora 91000 Evry Cedex (2007)Google Scholar
  23. 23.
    Poizat, P., Royer, J.C.: A formal architectural description language based on symbolic transition systems and temporal logic. J. Univers. Comput. Sci. 12(12), 1741–1782 (2006). http://www.jucs.org/jucs_12_12/a_formal_architectural_description
  24. 24.
    Olderog, E.R., Wehrheim, H.: Specification and (property) inheritance in csp-oz. Sci. Comput. Program. 55(1–3), 227–257 (2005). Formal Methods for Components and Objects: Pragmatic aspects and applicationsGoogle Scholar
  25. 25.
    Nalepa, G.J., Wojnicki, I.: An ARD+ design and visualization toolchain prototype in Prolog. In: Wilson, D.C., Lane, H.C. (eds.) FLAIRS-21: Proceedings of the Twenty-First International Florida Artificial Intelligence Research Society conference: 15–17 May 2008, Coconut Grove, Florida, USA, pp. 373–374. AAAI Press (2008)Google Scholar
  26. 26.
    Nalepa, G.J., Wojnicki, I.: ARD+ a prototyping method for decision rules. method overview, tools, and the thermostat case study. Technical Report CSLTR 01/2009, AGH University of Science and Technology (2009)Google Scholar
  27. 27.
    Kluza, K., Kaczor, K., Nalepa, G.J.: Enriching business processes with rules using the Oryx BPMN editor. In: Rutkowski, L. et al. (eds.) Artificial Intelligence and Soft Computing: 11th International Conference, ICAISC 2012: Zakopane, Poland, April 29–May 3, 2012. Lecture Notes in Artificial Intelligence, vol. 7268, pp. 573–581. Springer (2012)Google Scholar
  28. 28.
    Bobek, S., Kaczor, K., Nalepa, G.J.: Overview of rule inference algorithms for structured rule bases. Gdansk Univ. Technol. Fac. ETI Ann. 18(8), 57–62 (2010)Google Scholar
  29. 29.
    Bratko, I.: Prolog Programming for Artificial Intelligence, 3rd edn. Addison Wesley, Harlow (2000)MATHGoogle Scholar
  30. 30.
    Bobek, S., Nalepa, G.J., Ślażyński, M.: Heartdroid – rule engine for mobile devices and context-aware systems. Pervasive and Mobile Computing (2016)Google Scholar
  31. 31.
    Bobek, S., Nalepa, G.J.: Uncertain context data management in dynamic mobile environments. Future Gener. Comput. Syst. 66, 110–124 (2017)CrossRefGoogle Scholar
  32. 32.
    Bobek, S., Nalepa, G.J.: Incomplete and uncertain data handling in context-aware rule-based systems with modified certainty factors algebra. In: Bikakis, A., Fodor, P., Roman, D. (eds.) Rules on the Web. From Theory to Applications. Lecture Notes in Computer Science, vol. 8620, pp. 157–167. Springer International Publishing (2014)Google Scholar
  33. 33.
    Bobek, S., Nalepa, G.: Compact representation of conditional probability for rule-based mobile context-aware systems. In: Bikakis, A., Fodor, P., Roman, D. (eds.) Rules on the Web. From Theory to Applications. Lecture Notes in Computer Science. Springer International Publishing (2015)Google Scholar
  34. 34.
    Ligęza, A., Nalepa, G.J.: Proposal of a formal verification framework for the XTT2 rule bases. In: Tadeusiewicz, R., Ligęza, A., Mitkowski, W., Szymkat, M. (eds.) CMS’09: Computer Methods and Systems: 7th conference, 26–27 November 2009, Kraków, Poland, Kraków, AGH University of Science and Technology, Cracow, Oprogramowanie Naukowo-Techniczne, pp. 105–110 (2009)Google Scholar
  35. 35.
    Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: HalVA – rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Programming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 337–344. Springer, Berlin (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations