Rules in Mobile Context-Aware Systems

Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 130)

Abstract

Building systems that acquire, process and reason with context data is a major challenge, especially on mobile platforms. Constant updates of knowledge models are one of the primary requirements for the mobile context-aware systems. In this chapter we discuss selected practical results of the KnowMe project. We demonstrate the use of the formal model for uncertainty handling. We distinguish three phases that every context-aware system should pass during the development and later while operating on the mobile device. We discuss the knowledge modeling aspects and the use of the KnowMe toolset.

References

  1. 1.
    Dey, A.K.: Providing architectural support for building context-aware applications. Ph.D. thesis, Atlanta, GA, USA, AAI9994400 (2000)Google Scholar
  2. 2.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16(2), 97–166 (2001)CrossRefGoogle Scholar
  3. 3.
    Pascalau, E., Nalepa, G.J., Kluza, K.: Towards a better understanding of the concept of context-aware business applications. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems – FedCSIS 2013, Krakow, Poland, 8–11 September 2013, pp. 959–966. IEEE (2013)Google Scholar
  4. 4.
    Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11(1), 171–193 (2014)CrossRefGoogle Scholar
  5. 5.
    Bobek, S.: Methods for modeling self-adaptive mobile context-aware sytems. Ph.D. thesis, AGH University of Science and Technology (2016). Supervisor: Grzegorz J. NalepaGoogle Scholar
  6. 6.
    Bobek, S., Nalepa, G.J., Ślażyński, M.: Challenges for migration of rule-based reasoning engine to a mobile platform. In: Dziech, A., Czyżewski, A. (eds.) Multimedia Communications, Services and Security. Communications in Computer and Information Science, vol. 429, pp. 43–57. Springer, Berlin (2014)Google Scholar
  7. 7.
    Bobek, S., Nalepa, G.J., Ligęza, A., Adrian, W.T., Kaczor, K.: Mobile context-based framework for threat monitoring in urban environment with social threat monitor. In: Multimedia Tools and Applications (2014). https://doi.org/10.1007/s11042-014-2060-9
  8. 8.
    Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’09, pp. 2119–2128. ACM, New York (2009)Google Scholar
  9. 9.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  10. 10.
    Lim, B.Y., Dey, A.K.: Investigating intelligibility for uncertain context-aware applications. In: Proceedings of the 13th International Conference on Ubiquitous Computing. UbiComp ’11, pp. 415–424. ACM, New York (2011)Google Scholar
  11. 11.
    Hunt, J.: Guide to the Unified Process featuring UML, Java and Design Patterns. Springer, Berlin (2003)Google Scholar
  12. 12.
    Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’00, pp. 71–80. ACM, New York (2000)Google Scholar
  13. 13.
    Köping, L., Grzegorzek, M., Deinzer, F., Bobek, S., Ślażyński, M., Nalepa, G.J.: Improving indoor localization by user feedback. In: 2015 18th International Conference on Information Fusion (Fusion), pp. 1053–1060 (2015)Google Scholar
  14. 14.
    Ferreira, D.: AWARE: a mobile context instrumentation middleware to collaboratively understand human behavior. Ph.D. thesis, University of Oulu (2013)Google Scholar
  15. 15.
    Bobek, S., Porzycki, K., Nalepa, G.J.: Learning sensors usage patterns in mobile context-aware systems. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the Federated Conference on Computer Science and Information Systems – FedCSIS 2013, Krakow, Poland, 8-11 September 2013, pp. 993–998. IEEE (2013)Google Scholar
  16. 16.
    Bobek, S., Ślażyński, M., Nalepa, G.J.: Capturing dynamics of mobile context-aware systems with rules and statistical analysis of historical data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol. 9120, pp. 578–590. Springer International Publishing (2015)Google Scholar
  17. 17.
    Senge, R., Bösner, S., Dembczyński, K., Haasenritter, J., Hirsch, O., Donner-Banzhoff, N., Hüllermeier, E.: Reliable classification: learning classifiers that distinguish aleatoric and epistemic uncertainty. Inf. Sci. 255, 16–29 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Parsaye, K., Chignell, M.: Expert Systems for Experts. Wiley, New York (1988)Google Scholar
  19. 19.
    Bobek, S., Nalepa, G.J.: Incomplete and uncertain data handling in context-aware rule-based systems with modified certainty factors algebra. In: Bikakis, A., Fodor, P., Roman, D. (eds.) Rules on the Web. From Theory to Applications. Lecture Notes in Computer Science, vol. 8620, pp. 157–167. Springer International Publishing (2014)Google Scholar
  20. 20.
    Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: HalVA – rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Programming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 337–344. Springer, Berlin (2011)Google Scholar
  21. 21.
    Bobek, S., Nalepa, G.: Compact representation of conditional probability for rule-based mobile context-aware systems. In: Bikakis, A., Fodor, P., Roman, D. (eds.) Rules on the Web. From Theory to Applications. Lecture Notes in Computer Science. Springer International Publishing (2015)Google Scholar
  22. 22.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  23. 23.
    Chau, M., Cheng, R., Kao, B., Ng, J.: Uncertain data mining: an example in clustering location data. In: Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). Lecture Notes in Computer Science, vol. 3918, pp. 199–204. Springer (2006)Google Scholar
  24. 24.
    Tsang, S., Kao, B., Yip, K.Y., Ho, W.S., Lee, S.D.: Decision trees for uncertain data. IEEE Trans. Knowl. Data Eng. 23(1), 64–78 (2011)CrossRefGoogle Scholar
  25. 25.
    Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications. IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)CrossRefGoogle Scholar
  26. 26.
    Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Maron, O., Moore, A.: Hoeffding races: accelerating model selection search for classification and function approximation. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 59–66. Morgan Kaufmann, San Francisco (1994)Google Scholar
  29. 29.
    Bobek, S., Dziadzio, S., Jaciów, P., Ślażyński, M., Nalepa, G.J.: Understanding context with ContextViewer – tool for visualization and initial preprocessing of mobile sensors data. In: Proceedings of Modeling and Using Context: 9th International and Interdisciplinary Conference, CONTEXT 2015, Lanarca, Cyprus, November 2-6, 2015, pp. 77–90. Springer International Publishing, Cham (2015)Google Scholar
  30. 30.
    Bobek, S.: HeaRT rule inference engine in intelligent systems. PAR Pomiary Automatyka Robotyka 15(12), 226–228 (2011). ISSN 1427-9126Google Scholar
  31. 31.
    Kiepas, P., Bobek, S., Nalepa, G.J.: Concept of rule-based configurator for Auto-WEKA using OpenML. In: Proceedings of the 2015 International Workshop on Meta-Learning and Algorithm Selection, p. 106 (2015)Google Scholar
  32. 32.
    Bobek, S., Grodzki, O., Nalepa, G.J.: Indoor microlocation with BLE beacons and incremental rule learning. In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), pp. 91–96 (2015)Google Scholar
  33. 33.
    Bobek, S., Nalepa, G.J.: Uncertain context data management in dynamic mobile environments. Future Gener. Comput. Syst. 66, 110–124 (2017)CrossRefGoogle Scholar
  34. 34.
    Zhang, L., Guan, Y.: Variance estimation over sliding windows. In: Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS ’07, pp. 225–232. ACM, New York (2007)Google Scholar
  35. 35.
    Ester, M., peter Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), pp. 226–231. AAAI Press (1996)Google Scholar
  36. 36.
    Bobek, S., Nalepa, G., Grodzki, O.: Automated discovery of mobile users locations with improved k-means clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol. 9120, pp. 565–577. Springer International Publishing (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations