Advertisement

Rules as a Knowledge Representation Paradigm

  • Grzegorz J. Nalepa
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 130)

Abstract

Rules are a commonly used and natural way to express knowledge. They have been used for decades in AI, Computer Science, Cognitive Science and other domains. We start by discussing the AI roots of rules and elaborate on different kinds and types of rules. We then focus on a more careful treatment of rules in symbolic AI. There, they constitute an approach which allows for the representation of knowledge and basic automated reasoning. Originally, one of the most important areas for rule applications were expert systems. We will discuss them, along with a much broader perspective. What makes rule-based representation and reasoning particularly interesting is the opportunity for the formalization of rule languages. Therefore, selected logic-based formalizations are considered. We present in more detail a family of so-called attributive logics. Based on these concepts we introduce important requirements for a formalized description of rule based-systems.

References

  1. 1.
    Nilsson, N.J.: Artificial Intelligence: A New Synthesis, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (1998)MATHGoogle Scholar
  2. 2.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall, Harlow (2009)MATHGoogle Scholar
  3. 3.
    Giarratano, J., Riley, G.: Expert Systems. Principles and Programming, 4th edn. Thomson Course Technology, Boston (2005). ISBN 0-534-38447-1Google Scholar
  4. 4.
    Ligęza, A.: Expert systems approach to decision support. Eur. J. Oper. Res. 37(1), 100–110 (1988)CrossRefGoogle Scholar
  5. 5.
    von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rules Approach. Wiley, New York (2001)Google Scholar
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)Google Scholar
  7. 7.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC, Boca Raton (2009)Google Scholar
  8. 8.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin (2013)CrossRefGoogle Scholar
  9. 9.
    Brachman, R., Levesque, H.: Knowledge Representation and Reasoning, 1st edn. Morgan Kaufmann (2004)Google Scholar
  10. 10.
    Wagner, G., Damásio, C.V., Antoniou, G.: Towards a general web rule language. Int. J. Web Eng. Technol. 2(2/3), 181–206 (2005)CrossRefGoogle Scholar
  11. 11.
    Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. OMG (2003)Google Scholar
  12. 12.
    Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Practice and Promise. Addison Wesley, Boston (2003)Google Scholar
  13. 13.
    OMG: Production Rule Representation (OMG PRR) version 1.0 specification. Technical Report formal/2009-12-01, Object Management Group (2009). http://www.omg.org/spec/PRR/1.0
  14. 14.
    Dechter, R.: Constraint Processing. The Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, San Francisco (2003)MATHGoogle Scholar
  15. 15.
    Bratko, I.: Prolog Programming for Artificial Intelligence, 3rd edn. Addison Wesley, Harlow (2000)MATHGoogle Scholar
  16. 16.
    Berndtsson, M., Mellin, J.: In: E.C.A Rules, pp. 959–960. Springer US, Boston, MA (2009)Google Scholar
  17. 17.
    Paschke, A., Kozlenkov, A., Boley, H., Athan, T.: Specification of reaction ruleml 1.0. Technical report, RuleML (2016). http://reaction.ruleml.org/spec
  18. 18.
    Clark, J.: XSL Transformations (XSLT) version 1.0 W3C recommendation 16 november 1999. Technical report, World Wide Web Consortium (W3C) (1999)Google Scholar
  19. 19.
    Hay, D., Kolber, A., Healy, K.A.: Defining Business Rules - what they really are. Final Report. Technical report, Business Rules Group (2000)Google Scholar
  20. 20.
    Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, New York (2012)CrossRefMATHGoogle Scholar
  21. 21.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher, San Francisco (2000)MATHGoogle Scholar
  22. 22.
    Nadel, L. (ed.): Knowledge representation. Encyclopedia of Cognitive Science, vol. 2, pp. 671–680. Macmillan Publishers Ltd., Basingstoke (2003)Google Scholar
  23. 23.
    Ichikawa, J.J., Steup, M.: The Analysis of Knowledge. In: Stanford Encyclopedia of Philosophy. Center for the Study of Language and Information (CSLI), Stanford University (2014)Google Scholar
  24. 24.
    Negnevitsky, M.: Artificial Intelligence. A Guide to Intelligent Systems. Addison-Wesley, Harlow (2002). ISBN 0-201-71159-1Google Scholar
  25. 25.
    Hendler, J., van Harmelen, F.: The semantic web: webizing knowledge representation. Handbook of Knowledge Representation. Elsevier, New York (2008)Google Scholar
  26. 26.
    van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Knowledge representation and classical logic. Handbook of Knowledge Representation. Elsevier Science, Amsterdam (2007)Google Scholar
  27. 27.
    van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation. Elsevier Science, Amsterdam (2007)MATHGoogle Scholar
  28. 28.
    Minsky, M.: A framework for representing knowledge. The Psychology of Computer Vision. McGraw-Hill, New York (1975)Google Scholar
  29. 29.
    Quillian, M.R.: Semantic memory. Semantic Information Processing. MIT Press, Cambridge (1968)Google Scholar
  30. 30.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  31. 31.
    Sowa, J.: Semantic Networks. Encyclopedia of Artificial Intelligence. Wiley, New York (1987). revised and extended for the second edition (1992)Google Scholar
  32. 32.
    Vanthienen, J., Dries, E., Keppens, J.: Clustering knowledge in tabular knowledge bases. In: Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence, pp. 88–95 (1996)Google Scholar
  33. 33.
    Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Berlin (2006)MATHGoogle Scholar
  34. 34.
    Vanthienen, J., Mues, C., Wets, G.: Inter-tabular verification in an interactive environment. In: Vanthienen, J., van Harmelen, F. (eds.) EUROVAV, pp. 155–165. Katholieke Universiteit Leuven, Belgium (1997)Google Scholar
  35. 35.
    Vanthienen, J., Mues, C., Aerts, A., Wets, G.: A modularization approach to the verification of knowledge based systems. In: 14th International Joint Conference on Artificial Intelligence (IJCAI’95) - Workshop on Validation & Verification of Knowledge Based Systems, Montreal, Canada, 20–25 Aug 1995Google Scholar
  36. 36.
    Vanthienen, J., Robben, F.: Developing legal knowledge based systems using decision tables. In: ICAIL, pp. 282–291 (1993)Google Scholar
  37. 37.
    Vanthienen, J., Dries, E.: Illustration of a decision table tool for specifying and implementing knowledge based systems. In: ICTAI, pp. 198–205 (1993)Google Scholar
  38. 38.
    Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234 (1987)CrossRefGoogle Scholar
  39. 39.
    Hopgood, A.A.: Intelligent Systems for Engineers and Scientists, 2nd edn. CRC Press, Boca Raton (2001)Google Scholar
  40. 40.
    Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project. The Addison-Wesley Series in Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston (1984)Google Scholar
  41. 41.
    Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison–Wesley, Harlow (1999)MATHGoogle Scholar
  42. 42.
    Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca Raton (1998)MATHGoogle Scholar
  43. 43.
    Waterman, D.A.: A Guide to Expert Systems. Addison-Wesley Longman Publishing Co. Inc., Boston (1985)Google Scholar
  44. 44.
    David, J.M., Krivine, J.P., Simmons, R. (eds.): Second Generation Expert Systems. Springer, Secaucus (1993)MATHGoogle Scholar
  45. 45.
    Forgy, C.: Rete: a fast algorithm for the many patterns/many objects match problem. Artif. Intell. 19(1), 17–37 (1982)CrossRefGoogle Scholar
  46. 46.
    Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems in OPS5. Addison-Wesley, Boston (1985)Google Scholar
  47. 47.
    Riley, G.: CLIPS - A Tool for Building Expert Systems (2008). http://clipsrules.sourceforge.net
  48. 48.
    Friedman-Hill, E.: Jess in Action, Rule Based Systems in Java. Manning, Greenwich (2003)Google Scholar
  49. 49.
    Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, London (2001)CrossRefMATHGoogle Scholar
  50. 50.
    Tepandi, J.: Verification, testing, and validation of rule-based expert systems. In: Proceedings of the 11-th IFAC World Congress, pp. 162–167 (1990)Google Scholar
  51. 51.
    Rosati, R.: DL+log: Tight integration of description logics and disjunctive Datalog. In: Proceedings of the Tenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 68–78 (2006)Google Scholar
  52. 52.
    Nilsson, U., Małuszyński, J.: Logic, Programming and Prolog, 2nd edn. Wiley, Chichester (2000). http://www.ida.liu.se/~ulfni/lpp
  53. 53.
    Delugach, H.: ISO/IEC 24707 Information Technology–Common Logic (CL) – A Framework for a Family of Logic-Based Languages. The formally adopted ISO specification (2007)Google Scholar
  54. 54.
    Marcja, A., Toffalori, C.: A Guide to Classical and Modern Model Theory. Trends in Logic: Studia Logica Library. Kluwer Academic Publishers, Dordrecht (2003)CrossRefMATHGoogle Scholar
  55. 55.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. Handbook of Knowledge Representation. Elsevier, New York (2008)Google Scholar
  56. 56.
    Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. J. ACM 42(4), 741–843 (1995)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Lukichev, S.: Towards Rule Interchange and Rule Verification. Ph.D. thesis, Brandenburg University of Technology (2010). urn:nbn:de:kobv:co1-opus-20772; http://d-nb.info/1013547209
  58. 58.
    Blackburn, P.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  59. 59.
    Genesereth, M.R., Nilsson, N.J.: Logical Foundations for Artificial Intelligence. Morgan Kaufmann Publishers Inc., Los Altos (1987)MATHGoogle Scholar
  60. 60.
    Connolly, T., Begg, C., Strechan, A.: Database Systems, A Practical Approach to Design, Implementation, and Management, 2nd edn. Addison-Wesley, Harlow (1999)Google Scholar
  61. 61.
    Klösgen, W., Żytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)MATHGoogle Scholar
  62. 62.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)MATHGoogle Scholar
  63. 63.
    Torsun, I.S.: Foundations of Intelligent Knowledge-Based Systems. Academic Press, London (1995)Google Scholar
  64. 64.
    Nalepa, G.J.: Semantic Knowledge Engineering A Rule-Based Approach. Wydawnictwa AGH, Kraków (2011)Google Scholar
  65. 65.
    Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems. Int. J. Appl. Math. Comput. Sci. 20(1), 35–53 (2010)CrossRefMATHGoogle Scholar
  66. 66.
    Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2 method. Int. J. Artif. Intell. Tools 20(6), 1107–1125 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations