Skip to main content

Stomach and Bone

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

The relation between gastrointestinal organs and bone metabolism has become clearer during the last decades. Of paramount importance is the tight and intertwined regulation of gastric acid secretion and bone metabolism in regard of diseases caused by dysfunction of any of these or intermediary organs or mediators. The importance of the functions of the endocrine modulators 1,25(OH)2 vitamin D (calcitriol), PTH, and calcitonin becomes clear when seeing misbalances and its impact on the skeleton. Another important player in the gut-bone signaling axis is calcium, which is operating through the calcium-sensing receptor (CaSR). The CaSR is located on diverse tissues of the human body, such as the parathyroid glands, stomach, intestine, and kidney. The strict regulation of calcium homeostasis is of high importance and any disturbances have immense consequences for the body. Mechanisms and therapeutic implications, as well as diseases caused by imbalances on the stomach-bone signaling axis, are highlighted in the following chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev. 2013;93(1):189–268.

    Article  CAS  PubMed  Google Scholar 

  2. Bushinsky DA, Lechleider RJ. Mechanism of proton-induced bone calcium release: calcium carbonate-dissolution. Am J Phys. 1987;253(5 Pt 2):F998–1005.

    CAS  Google Scholar 

  3. Jouret F, Wu J, Hull M, Rajendran V, Mayr B, Schofl C, et al. Activation of the Ca(2)+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J Cell Sci. 2013;126(Pt 22):5132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dufner MM, Kirchhoff P, Remy C, Hafner P, Muller MK, Cheng SX, et al. The calcium-sensing receptor acts as a modulator of gastric acid secretion in freshly isolated human gastric glands. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1084–90.

    Article  CAS  PubMed  Google Scholar 

  5. Alfadda TI, Saleh AM, Houillier P, Geibel JP. Calcium-sensing receptor 20 years later. Am J Phys Cell Physiol. 2014;307(3):C221–31.

    Article  CAS  Google Scholar 

  6. Geibel JP, Hebert SC. The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol. 2009;71:205–17.

    Article  CAS  PubMed  Google Scholar 

  7. Marie PJ. The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone. 2010;46(3):571–6.

    Article  CAS  PubMed  Google Scholar 

  8. Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol. 2010;298(3):F485–99.

    Article  CAS  PubMed  Google Scholar 

  9. Bai M, Trivedi S, Brown EM. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem. 1998;273(36):23605–10.

    Article  CAS  PubMed  Google Scholar 

  10. Ray K, Clapp P, Goldsmith PK, Spiegel AM. Identification of the sites of N-linked glycosylation on the human calcium receptor and assessment of their role in cell surface expression and signal transduction. J Biol Chem. 1998;273(51):34558–67.

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang X, Adipietro KA, Datta S, Northup JK, Ray K. Rab1 small GTP-binding protein regulates cell surface trafficking of the human calcium-sensing receptor. Endocrinology. 2010;151(11):5114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Y, Niwa J, Sobue G, Breitwieser GE. Calcium-sensing receptor ubiquitination and degradation mediated by the E3 ubiquitin ligase dorfin. J Biol Chem. 2006;281(17):11610–7.

    Article  CAS  PubMed  Google Scholar 

  13. Poon G. Cinacalcet hydrochloride (Sensipar). Proc (Baylor Univ Med Cent). 2005;18(2):181–4.

    Google Scholar 

  14. Bourdeau A, Souberbielle JC, Bonnet P, Herviaux P, Sachs C, Lieberherr M. Phospholipase-A2 action and arachidonic acid metabolism in calcium-mediated parathyroid hormone secretion. Endocrinology. 1992;130(3):1339–44.

    CAS  PubMed  Google Scholar 

  15. Russell J, Bar A, Sherwood LM, Hurwitz S. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids. Endocrinology. 1993;132(6):2639–44.

    Article  CAS  PubMed  Google Scholar 

  16. Imanishi Y, Kawata T, Kenko T, Wada M, Nagano N, Miki T, et al. Cinacalcet HCl suppresses Cyclin D1 oncogene-derived parathyroid cell proliferation in a murine model for primary hyperparathyroidism. Calcif Tissue Int. 2011;89(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  17. Pi M, Chen L, Huang M, Luo Q, Quarles LD. Parathyroid-specific interaction of the calcium-sensing receptor and G alpha q. Kidney Int. 2008;74(12):1548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ba J, Brown D, Friedman PA. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol Renal Physiol. 2003;285(6):F1233–43.

    Article  CAS  PubMed  Google Scholar 

  19. Shareghi GR, Stoner LC. Calcium transport across segments of the rabbit distal nephron in vitro. Am J Phys. 1978;235(4):F367–75.

    CAS  Google Scholar 

  20. Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol. 2001;281(6):F1021–7.

    Article  CAS  PubMed  Google Scholar 

  21. Topala CN, Schoeber JP, Searchfield LE, Riccardi D, Hoenderop JG, Bindels RJ. Activation of the Ca2+−sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium. 2009;45(4):331–9.

    Article  CAS  PubMed  Google Scholar 

  22. Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, et al. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol. 2009;20(8):1705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT, et al. Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Phys. 1998;274(5 Pt 2):F978–85.

    CAS  Google Scholar 

  24. Buchan AM, Squires PE, Ring M, Meloche RM. Mechanism of action of the calcium-sensing receptor in human antral gastrin cells. Gastroenterology. 2001;120(5):1128–39.

    Article  CAS  PubMed  Google Scholar 

  25. Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, et al. Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci U S A. 2010;107(41):17791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Busque SM, Kerstetter JE, Geibel JP, Insogna K. L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(4):G664–9.

    CAS  PubMed  Google Scholar 

  27. Remy C, Kirchhoff P, Hafner P, Busque SM, Mueller MK, Geibel JP, et al. Stimulatory pathways of the calcium-sensing receptor on acid secretion in freshly isolated human gastric glands. Cell Physiol Biochem. 2007;19(1–4):33–42.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng I, Qureshi I, Chattopadhyay N, Qureshi A, Butters RR, Hall AE, et al. Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology. 1999;116(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  29. Chattopadhyay N, Yano S, Tfelt-Hansen J, Rooney P, Kanuparthi D, Bandyopadhyay S, et al. Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology. 2004;145(7):3451–62.

    Article  CAS  PubMed  Google Scholar 

  30. Garner SC, Pi M, Tu Q, Quarles LD. Rickets in cation-sensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology. 2001;142(9):3996–4005.

    Article  CAS  PubMed  Google Scholar 

  31. Pi M, Garner SC, Flannery P, Spurney RF, Quarles LD. Sensing of extracellular cations in CasR-deficient osteoblasts. Evidence for a novel cation-sensing mechanism. J Biol Chem. 2000;275(5):3256–63.

    Article  CAS  PubMed  Google Scholar 

  32. Pi M, Chen L, Huang MZ, Zhu W, Ringhofer B, Luo J, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One. 2008;3(12):e3858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dvorak MM, Chen TH, Orwoll B, Garvey C, Chang W, Bikle DD, et al. Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology. 2007;148(7):3156–63.

    Article  CAS  PubMed  Google Scholar 

  34. Hess AF. The prevention and cure of rickets by sunlight. Am J Public Health (N Y). 1922;12(2):104–7.

    Article  CAS  Google Scholar 

  35. Hollander D, Muralidhara KS, Zimmerman A. Vitamin D-3 intestinal absorption in vivo: influence of fatty acids, bile salts, and perfusate pH on absorption. Gut. 1978;19(4):267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hollander D, Truscott TC. Mechanism and site of small intestinal uptake of vitamin D3 in pharmacological concentrations. Am J Clin Nutr. 1976;29(9):970–5.

    CAS  PubMed  Google Scholar 

  37. Rautureau M, Rambaud JC. Aqueous solubilisation of vitamin D3 in normal man. Gut. 1981;22(5):393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davies M, Mawer EB, Krawitt EL. Comparative absorption of vitamin D3 and 25-hydroxyvitamin D3 in intestinal disease. Gut. 1980;21(4):287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dueland S, Pedersen JI, Helgerud P, Drevon CA. Transport of vitamin D3 from rat intestine. Evidence for transfer of vitamin D3 from chylomicrons to alpha-globulins. J Biol Chem. 1982;257(1):146–50.

    CAS  PubMed  Google Scholar 

  40. Dueland S, Pedersen JI, Helgerud P, Drevon CA. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Phys. 1983;245(5 Pt 1):E463–7.

    CAS  Google Scholar 

  41. Dueland S, Helgerud P, Pedersen JI, Berg T, Drevon CA. Plasma clearance, transfer, and distribution of vitamin D3 from intestinal lymph. Am J Phys. 1983;245(4):E326–31.

    CAS  Google Scholar 

  42. Adams JS, Clemens TL, Parrish JA, Holick MF. Vitamin-D synthesis and metabolism after ultraviolet irradiation of normal and vitamin-D-deficient subjects. N Engl J Med. 1982;306(12):722–5.

    Article  CAS  PubMed  Google Scholar 

  43. Holick MF, Schnoes HK, DeLuca HF, Suda T, Cousins RJ. Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry. 1971;10(14):2799–804.

    Article  CAS  PubMed  Google Scholar 

  44. Booth BE, Tsai HC, Morris RC Jr. Vitamin D status regulates 25-hydroxyvitamin D3-1 alpha-hydroxylase and its responsiveness to parathyroid hormone in the chick. J Clin Invest. 1985;75(1):155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bland R, Walker EA, Hughes SV, Stewart PM, Hewison M. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology. 1999;140(5):2027–34.

    Article  CAS  PubMed  Google Scholar 

  46. Haddad JG Jr, Walgate J. 25-hydroxyvitamin D transport in human plasma. Isolation and partial characterization of calcifidiol-binding protein. J Biol Chem. 1976;251(16):4803–9.

    CAS  PubMed  Google Scholar 

  47. Silver J, Fainaru M. Transport of vitamin D sterols in human plasma: effect of excess vitamin D, 25 hydroxyvitamin D and 1,25 dihydroxyvitamin D. Eur J Clin Investig. 1979;9(6):433–8.

    Article  CAS  Google Scholar 

  48. Friedman J, Raisz LG. Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science. 1965;150(3702):1465–7.

    Article  CAS  PubMed  Google Scholar 

  49. Ardaillou R, Vuagnat P, Milhaud G, Richet G. Effects of thyrocalcitonin on the renal excretion of phosphates, calcium and hydrogen ions in man. Nephron. 1967;4(5):298–314.

    Article  CAS  PubMed  Google Scholar 

  50. Carney SL. Calcitonin and human renal calcium and electrolyte transport. Miner Electrolyte Metab. 1997;23(1):43–7.

    CAS  PubMed  Google Scholar 

  51. Berndt TJ, Knox FG. Effects of parathyroid hormone and calcitonin on electrolyte excretion in the rabbit. Kidney Int. 1980;17(4):473–8.

    Article  CAS  PubMed  Google Scholar 

  52. Wuster C, Raue F, Meyer C, Bergmann M, Ziegler R. Long-term excess of endogenous calcitonin in patients with medullary thyroid carcinoma does not affect bone mineral density. J Endocrinol. 1992;134(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  53. Cooper CW, Hirsch PF, Munson PL. Importance of endogenous thyrocalcitonin for protection against hypercalcemia in the rat. Endocrinology. 1970;86(2):406–15.

    Article  CAS  PubMed  Google Scholar 

  54. Yergey AL, Abrams SA, Vieira NE, Aldroubi A, Marini J, Sidbury JB. Determination of fractional absorption of dietary calcium in humans. J Nutr. 1994;124(5):674–82.

    CAS  PubMed  Google Scholar 

  55. Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D, Calcium. The National Academies collection: reports funded by National Institutes of Health. In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press (US) National Academy of Sciences; 2011.

    Google Scholar 

  56. Pansu D, Bellaton C, Bronner F. Effect of Ca intake on saturable and nonsaturable components of duodenal Ca transport. Am J Phys. 1981;240(1):G32–7.

    CAS  Google Scholar 

  57. Tudpor K, Teerapornpuntakit J, Jantarajit W, Krishnamra N, Charoenphandhu N. 1,25-dihydroxyvitamin D(3) rapidly stimulates the solvent drag-induced paracellular calcium transport in the duodenum of female rats. J Physiol Sci. 2008;58(5):297–307.

    Article  CAS  PubMed  Google Scholar 

  58. Chirayath MV, Gajdzik L, Hulla W, Graf J, Cross HS, Peterlik M. Vitamin D increases tight-junction conductance and paracellular Ca2+ transport in Caco-2 cell cultures. Am J Phys. 1998;274(2 Pt 1):G389–96.

    CAS  Google Scholar 

  59. Schachter D, Dowdle EB, Schenker H. Active transport of calcium by the small intestine of the rat. Am J Phys. 1960;198:263–8.

    CAS  Google Scholar 

  60. Miller A 3rd, Bronner F. Calcium uptake in isolated brush-border vesicles from rat small intestine. Biochem J. 1981;196(2):391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274(32):22739–46.

    Article  CAS  PubMed  Google Scholar 

  62. Hoenderop JG, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 2003;22(4):776–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoenderop JG, Vennekens R, Muller D, Prenen J, Droogmans G, Bindels RJ, et al. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2. J Physiol. 2001;537(Pt 3):747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Al-Ansary D, Bogeski I, Disteldorf BM, Becherer U, Niemeyer BA. ATP modulates Ca2+ uptake by TRPV6 and is counteracted by isoform-specific phosphorylation. FASEB J. 2010;24(2):425–35.

    Article  CAS  PubMed  Google Scholar 

  65. van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, et al. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J. 2003;22(7):1478–87.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bohmer C, Palmada M, Kenngott C, Lindner R, Klaus F, Laufer J, et al. Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible kinase isoforms SGK1 and SGK3. FEBS Lett. 2007;581(29):5586–90.

    Article  CAS  PubMed  Google Scholar 

  67. Kim HJ, Yang DK, So I. PDZ domain-containing protein as a physiological modulator of TRPV6. Biochem Biophys Res Commun. 2007;361(2):433–8.

    Article  CAS  PubMed  Google Scholar 

  68. Derler I, Hofbauer M, Kahr H, Fritsch R, Muik M, Kepplinger K, et al. Dynamic but not constitutive association of calmodulin with rat TRPV6 channels enables fine tuning of Ca2+-dependent inactivation. J Physiol. 2006;577(Pt 1):31–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wasserman RH, Taylor AN. Vitamin d3-induced calcium-binding protein in chick intestinal mucosa. Science. 1966;152(3723):791–3.

    Article  CAS  PubMed  Google Scholar 

  70. Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Phys. 1986;250(5 Pt 1):G561–9.

    CAS  Google Scholar 

  71. Duflos C, Bellaton C, Baghdassarian N, Gadoux M, Pansu D, Bronner F. 1,25-Dihydroxycholecalciferol regulates rat intestinal calbindin D9k posttranscriptionally. J Nutr. 1996;126(4):834–41.

    CAS  PubMed  Google Scholar 

  72. Kutuzova GD, Akhter S, Christakos S, Vanhooke J, Kimmel-Jehan C, Deluca HF. Calbindin D(9k) knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level. Proc Natl Acad Sci U S A. 2006;103(33):12377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008;149(6):3196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Keeton TP, Burk SE, Shull GE. Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca(2+)-ATPase isoforms 1, 2, 3, and 4. J Biol Chem. 1993;268(4):2740–8.

    CAS  PubMed  Google Scholar 

  75. Walters JR. Calbindin-D9k stimulates the calcium pump in rat enterocyte basolateral membranes. Am J Phys. 1989;256(1 Pt 1):G124–8.

    CAS  Google Scholar 

  76. Lytton J. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J. 2007;406(3):365–82.

    Article  CAS  PubMed  Google Scholar 

  77. Bers DM, Ginsburg KS. Na:Ca stoichiometry and cytosolic Ca-dependent activation of NCX in intact cardiomyocytes. Ann N Y Acad Sci. 2007;1099:326–38.

    Article  CAS  PubMed  Google Scholar 

  78. Li XF, Kraev AS, Lytton J. Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J Biol Chem. 2002;277(50):48410–7.

    Article  CAS  PubMed  Google Scholar 

  79. Prinz C, Kajimura M, Scott D, Helander H, Shin J, Besancon M, et al. Acid secretion and the H,K ATPase of stomach. Yale J Biol Med. 1992;65(6):577–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sachs G, Shin JM, Hunt R. Novel approaches to inhibition of gastric acid secretion. Curr Gastroenterol Rep. 2010;12(6):437–47.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kopic S, Murek M, Geibel JP. Revisiting the parietal cell. Am J Phys Cell Physiol. 2010;298(1):C1–c10.

    Article  CAS  Google Scholar 

  82. Abe K, Kaya S, Taniguchi K, Hayashi Y, Imagawa T, Kikumoto M, et al. Evidence for a relationship between activity and the tetraprotomeric assembly of solubilized pig gastric H/K-ATPase. J Biochem. 2005;138(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  83. Asano S, Kawada K, Kimura T, Grishin AV, Caplan MJ, Takeguchi N. The roles of carbohydrate chains of the beta-subunit on the functional expression of gastric H(+),K(+)-ATPase. J Biol Chem. 2000;275(12):8324–30.

    Article  CAS  PubMed  Google Scholar 

  84. Vagin O, Denevich S, Sachs G. Plasma membrane delivery of the gastric H,K-ATPase: the role of beta-subunit glycosylation. Am J Phys Cell Physiol. 2003;285(4):C968–76.

    Article  CAS  Google Scholar 

  85. Abe K, Tani K, Nishizawa T, Fujiyoshi Y. Inter-subunit interaction of gastric H+,K+-ATPase prevents reverse reaction of the transport cycle. EMBO J. 2009;28(11):1637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Forte JG, Zhu L. Apical recycling of the gastric parietal cell H,K-ATPase. Annu Rev Physiol. 2010;72:273–96.

    Article  CAS  PubMed  Google Scholar 

  87. Kopic S, Geibel JP. Update on the mechanisms of gastric acid secretion. Curr Gastroenterol Rep. 2010;12(6):458–64.

    Article  PubMed  Google Scholar 

  88. Shin JM, Munson K, Vagin O, Sachs G. The gastric HK-ATPase: structure, function, and inhibition. Pflugers Archiv Eur J Physiol. 2009;457:609. 2011;461(3):399-

    Google Scholar 

  89. Engqvist-Goldstein AE, Warren RA, Kessels MM, Keen JH, Heuser J, Drubin DG. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell Biol. 2001;154(6):1209–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Keeley TM, Samuelson LC. Cytodifferentiation of the postnatal mouse stomach in normal and Huntingtin-interacting protein 1-related-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Supplisson S, Loo DD, Sachs G. Whole-cell currents in isolated resting Necturus gastric oxynticopeptic cells. J Physiol. 1993;463:57–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sidani SM, Kirchhoff P, Socrates T, Stelter L, Ferreira E, Caputo C, et al. DeltaF508 mutation results in impaired gastric acid secretion. J Biol Chem. 2007;282(9):6068–74.

    Article  CAS  PubMed  Google Scholar 

  93. Malinowska DH, Kupert EY, Bahinski A, Sherry AM, Cuppoletti J. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel. Am J Phys. 1995;268(1 Pt 1):C191–200.

    CAS  Google Scholar 

  94. Petrovic S, Wang Z, Ma L, Seidler U, Forte JG, Shull GE, et al. Colocalization of the apical Cl-/HCO3- exchanger PAT1 and gastric H-K-ATPase in stomach parietal cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(5):G1207–16.

    Article  CAS  PubMed  Google Scholar 

  95. Xu J, Song P, Miller ML, Borgese F, Barone S, Riederer B, et al. Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach. Proc Natl Acad Sci U S A. 2008;105(46):17955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vucic E, Alfadda T, MacGregor GG, Dong K, Wang T, Geibel JP. Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1. Pflugers Arch Eur J Physiol. 2015;467(7):1457–68.

    Article  CAS  Google Scholar 

  97. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000;106(12):1447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fujii T, Takahashi Y, Ikari A, Morii M, Tabuchi Y, Tsukada K, et al. Functional association between K+-Cl- cotransporter-4 and H+,K+-ATPase in the apical canalicular membrane of gastric parietal cells. J Biol Chem. 2009;284(1):619–29.

    Article  CAS  PubMed  Google Scholar 

  99. Edwards LW, Herrington JL Jr. Vagotomy and gastro-enterostomy; vagotomy and conservative gastrectomy; a comparative study. Ann Surg. 1953;137(6):873–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chew CS, Brown MR. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta. 1986;888(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  101. Berthoud HR. Morphological analysis of vagal input to gastrin releasing peptide and vasoactive intestinal peptide containing neurons in the rat glandular stomach. J Comp Neurol. 1996;370(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  102. DelValle J, Yamada T. Amino acids and amines stimulate gastrin release from canine antral G-cells via different pathways. J Clin Invest. 1990;85(1):139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Larsson LI, Goltermann N, de Magistris L, Rehfeld JF, Schwartz TW. Somatostatin cell processes as pathways for paracrine secretion. Science. 1979;205(4413):1393–5.

    Article  CAS  PubMed  Google Scholar 

  104. Madaus S, Schusdziarra V, Seufferlein T, Classen M. Effect of galanin on gastrin and somatostatin release from the rat stomach. Life Sci. 1988;42(23):2381–7.

    Article  CAS  PubMed  Google Scholar 

  105. Kazumori H, Ishihara S, Kawashima K, Fukuda R, Chiba T, Kinoshita Y. Analysis of gastrin receptor gene expression in proliferating cells in the neck zone of gastric fundic glands using laser capture microdissection. FEBS Lett. 2001;489(2–3):208–14.

    Article  CAS  PubMed  Google Scholar 

  106. Hakanson R, Blom H, Carlsson E, Larsson H, Ryberg B, Sundler F. Hypergastrinaemia produces trophic effects in stomach but not in pancreas and intestines. Regul Pept. 1986;13(3–4):225–33.

    Article  CAS  PubMed  Google Scholar 

  107. Schayer RW. Formation and binding of histamine by rat tissues in vitro. Am J Phys. 1956;187(1):63–5.

    CAS  Google Scholar 

  108. Dimaline R, Sandvik AK. Histidine decarboxylase gene expression in rat fundus is regulated by gastrin. FEBS Lett. 1991;281(1–2):20–2.

    Article  CAS  PubMed  Google Scholar 

  109. Gerhard M, Neumayer N, Presecan-Siedel E, Zanner R, Lengyel E, Cramer T, et al. Gastrin induces expression and promoter activity of the vesicular monoamine transporter subtype 2. Endocrinology. 2001;142(8):3663–72.

    Article  CAS  PubMed  Google Scholar 

  110. Zanner R, Hapfelmeier G, Gratzl M, Prinz C. Intracellular signal transduction during gastrin-induced histamine secretion in rat gastric ECL cells. Am J Phys Cell Physiol. 2002;282(2):C374–82.

    Article  CAS  Google Scholar 

  111. Miampamba M, Germano PM, Arli S, Wong HH, Scott D, Tache Y, et al. Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. Regul Pept. 2002;105(3):145–54.

    Article  CAS  PubMed  Google Scholar 

  112. Kidd M, Modlin IM, Black JW, Boyce M, Culler M. A comparison of the effects of gastrin, somatostatin and dopamine receptor ligands on rat gastric enterochromaffin-like cell secretion and proliferation. Regul Pept. 2007;143(1–3):109–17.

    Article  CAS  PubMed  Google Scholar 

  113. Bjorkqvist M, Bernsand M, Eliasson L, Hakanson R, Lindstrom E. Somatostatin, misoprostol and galanin inhibit gastrin- and PACAP-stimulated secretion of histamine and pancreastatin from ECL cells by blocking specific Ca2+ channels. Regul Pept. 2005;130(1–2):81–90.

    Article  PubMed  CAS  Google Scholar 

  114. Lindstrom E, Bjorkqvist M, Boketoft A, Chen D, Zhao CM, Kimura K, et al. Neurohormonal regulation of histamine and pancreastatin secretion from isolated rat stomach ECL cells. Regul Pept. 1997;71(2):73–86.

    Article  CAS  PubMed  Google Scholar 

  115. Wang LD, Hoeltzel M, Gantz I, Hunter R, Del Valle J. Characterization of the histamine H2 receptor structural components involved in dual signaling. J Pharmacol Exp Ther. 1998;285(2):573–8.

    CAS  PubMed  Google Scholar 

  116. Kobayashi T, Tonai S, Ishihara Y, Koga R, Okabe S, Watanabe T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest. 2000;105(12):1741–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Baldissera FG, Nielsen OV, Holst JJ. The intestinal mucosa preferentially releases somatostatin-28 in pigs. Regul Pept. 1985;11(3):251–62.

    Article  CAS  PubMed  Google Scholar 

  118. Alumets J, Ekelund M, El Munshid HA, Hakanson R, Loren I, Sundler F. Topography of somatostatin cells in the stomach of the rat: possible functional significance. Cell Tissue Res. 1979;202(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  119. Schubert ML, Makhlouf GM. Gastrin secretion induced by distention is mediated by gastric cholinergic and vasoactive intestinal peptide neurons in rats. Gastroenterology. 1993;104(3):834–9.

    Article  CAS  PubMed  Google Scholar 

  120. Konturek SJ, Bilski J, Cieszkowski M. Role of cholecystokinin in the intestinal fat- and acid-induced inhibition of gastric secretion. Regul Pept. 1992;42(1–2):97–109.

    Article  CAS  PubMed  Google Scholar 

  121. Lamberts R, Stumps D, Plumpe L, Creutzfeldt W. Somatostatin cells in rat antral mucosa: qualitative and quantitative ultrastructural analyses in different states of gastric acid secretion. Histochemistry. 1991;95(4):373–82.

    Article  CAS  PubMed  Google Scholar 

  122. Martinez V, Curi AP, Torkian B, Schaeffer JM, Wilkinson HA, Walsh JH, et al. High basal gastric acid secretion in somatostatin receptor subtype 2 knockout mice. Gastroenterology. 1998;114(6):1125–32.

    Article  CAS  PubMed  Google Scholar 

  123. Park J, Chiba T, Yamada T. Mechanisms for direct inhibition of canine gastric parietal cells by somatostatin. J Biol Chem. 1987;262(29):14190–6.

    CAS  PubMed  Google Scholar 

  124. Chey WY, Hitanant S, Hendricks J, Lorber SH. Effect of secretin and cholecystokinin on gastric emptying and gastric secretion in man. Gastroenterology. 1970;58(6):820–7.

    CAS  PubMed  Google Scholar 

  125. Bado A, Cloarec D, Moizo L, Laigneau JP, Bataille D, Lewin MJ. Neurotensin and oxyntomodulin-(30-37) potentiate PYY regulation of gastric acid and somatostatin secretions. Am J Phys. 1993;265(1 Pt 1):G113–7.

    CAS  Google Scholar 

  126. Black JW, Fisher EW, Smith AN. The effects of 5-hydroxytryptamine on gastric secretion in anaesthetized dogs. J Physiol. 1958;141(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Andersson S, Chang D, Folkers K, Rosell S. Inhibition of gastric acid secretion in dogs by neurotensin. Life Sci. 1976;19(3):367–70.

    Article  CAS  PubMed  Google Scholar 

  128. Dornonville de la Cour C, Lindstrom E, Norlen P, Hakanson R. Ghrelin stimulates gastric emptying but is without effect on acid secretion and gastric endocrine cells. Regul Pept. 2004;120(1–3):23–32.

    Article  CAS  PubMed  Google Scholar 

  129. Berg A, Redeen S, Grenegard M, Ericson AC, Sjostrand SE. Nitric oxide inhibits gastric acid secretion by increasing intraparietal cell levels of cGMP in isolated human gastric glands. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1061–6.

    Article  CAS  PubMed  Google Scholar 

  130. Beales IL, Calam J. Inhibition of carbachol stimulated acid secretion by interleukin 1beta in rabbit parietal cells requires protein kinase C. Gut. 2001;48(6):782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fellenius E, Berglindh T, Sachs G, Olbe L, Elander B, Sjostrand SE, et al. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H+ + K+)ATPase. Nature. 1981;290(5802):159–61.

    Article  CAS  PubMed  Google Scholar 

  132. Ferstl FS, Kitay AM, Trattnig RM, Alsaihati A, Geibel JP. Secretagogue-dependent and -independent transport of zinc hydration forms in rat parietal cells. Pflugers Arch. 2016;468(11–12):1877–83.

    Google Scholar 

  133. Lindberg P, Nordberg P, Alminger T, Brandstrom A, Wallmark B. The mechanism of action of the gastric acid secretion inhibitor omeprazole. J Med Chem. 1986;29(8):1327–9.

    Article  CAS  PubMed  Google Scholar 

  134. Besancon M, Shin JM, Mercier F, Munson K, Miller M, Hersey S, et al. Membrane topology and omeprazole labeling of the gastric H+,K(+)-adenosinetriphosphatase. Biochemistry. 1993;32(9):2345–55.

    Article  CAS  PubMed  Google Scholar 

  135. Klotz U, Schwab M, Treiber G. CYP2C19 polymorphism and proton pump inhibitors. Basic Clin Pharmacol Toxicol. 2004;95(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  136. Pidasheva S, D’Souza-Li L, Canaff L, Cole DE, Hendy GN. CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2004;24(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  137. Abramowitz J, Thakkar P, Isa A, Truong A, Park C, Rosenfeld RM. Adverse event reporting for proton pump inhibitor therapy: an overview of systematic reviews. Otolaryngol Head Neck Surg Off J Am Acad Otolaryngol Head Neck Surg. 2016;155(4):547–54.

    Article  Google Scholar 

  138. Yang YX, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA. 2006;296(24):2947–53.

    Article  CAS  PubMed  Google Scholar 

  139. Baird IM, Oleesky S. Osteomalacia following gastric surgery. Gastroenterology. 1957;33(2):284–92.

    CAS  PubMed  Google Scholar 

  140. Bisballe S, Eriksen EF, Melsen F, Mosekilde L, Sorensen OH, Hessov I. Osteopenia and osteomalacia after gastrectomy: interrelations between biochemical markers of bone remodelling, vitamin D metabolites, and bone histomorphometry. Gut. 1991;32(11):1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gertner JM, Lilburn M, Domenech M. 25-Hydroxycholecalciferol absorption in steatorrhoea and postgastrectomy osteomalacia. Br Med J. 1977;1(6072):1310–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Blichert-Toft M, Beck A, Christiansen C, Transbol I. Effects of gastric resection and vagotomy on blood and bone mineral content. World J Surg. 1979;3(1):99–102. 33–5

    Article  CAS  PubMed  Google Scholar 

  143. Davies M, Heys SE, Selby PL, Berry JL, Mawer EB. Increased catabolism of 25-hydroxyvitamin D in patients with partial gastrectomy and elevated 1,25-dihydroxyvitamin D levels. Implications for metabolic bone disease. J Clin Endocrinol Metab. 1997;82(1):209–12.

    CAS  PubMed  Google Scholar 

  144. Nilas L, Christiansen C. Vitamin D deficiency after highly selective vagotomy. Acta Med Scand. 1987;221(3):303–6.

    Article  CAS  PubMed  Google Scholar 

  145. Graziani G, Como G, Badalamenti S, Finazzi S, Malesci A, Gallieni M, et al. Effect of gastric acid secretion on intestinal phosphate and calcium absorption in normal subjects. Nephrol Dial Transplant. 1995;10(8):1376–80.

    CAS  PubMed  Google Scholar 

  146. O’Connell MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med. 2005;118(7):778–81.

    Article  PubMed  CAS  Google Scholar 

  147. Axelson J, Persson P, Gagnemo-Persson R, Hakanson R. Importance of the stomach in maintaining calcium homoeostasis in the rat. Gut. 1991;32(11):1298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Engelhardt W, Grohmann C, Schwille PO, Geus A. Calcium absorption in the rat as influenced by highly selective vagotomy with special regard to endogenous gastrin. Res Exp Med (Berl). 1982;180(1):1–9.

    Article  CAS  Google Scholar 

  149. Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med. 2009;15(6):674–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Geibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitay, A.M., Geibel, J.P. (2017). Stomach and Bone. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_6

Download citation

Publish with us

Policies and ethics