High-Performance Paper Microfluidic Malaria Test for Low-Resource Settings

  • Tinny Liang
  • Elain FuEmail author


In this chapter, we describe the application of paper microfluidics to develop a high-performance malaria test appropriate for use in low-resource settings. Malaria ranks in the top three for infectious disease burden worldwide, resulting in about two million deaths per year. Gold standard diagnostic tests for malaria use multistep protocols that require laboratory facilities and are often not accessible to patients in the developing world. Lateral flow tests are simple bioassays that have been used in low-resource settings for decades but can lack the sensitivity needed for clinical utility. Using paper microfluidic tools to automate the multistep sample processing that is characteristic of laboratory tests, we have developed a signal-amplified immunoassay for malaria detection with a higher sensitivity and a lower limit of detection than conventional lateral flow tests. Alternative fluid control tools are described within the same malaria system, and their potential for use in other systems is discussed.


Paper microfluidics Point-of-care diagnostic testing Immunoassays Malaria diagnosis Low-resource settings 


  1. 1.
    The World Health Organization: World Health Statistics 2014. World Health Organization, Geneva (2014)Google Scholar
  2. 2.
    Evans, J.A., Adusei, A., Timmann, C., May, J., Mack, D., Agbenyega, T., Horstmann, R.D., Frimpong, E.: High mortality of infant bacteraemia clinically indistinguishable from severe malaria. QJM Int. J. Med. 97(9), 591–597 (2004)CrossRefGoogle Scholar
  3. 3.
    Yager, P., Domingo, G.J., Gerdes, J.: Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)CrossRefPubMedGoogle Scholar
  4. 4.
    White, N.J.: Antimalarial drug resistance. J. Clin. Investig. 113(8), 1084–1092 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Peeling, R.W., Holmes, K.K., Mabey, D., Ronald, A.: Rapid tests for sexually transmitted infections (STIs): the way forward. Sex. Transm. Infect. 82, V1–V6 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moody, A.: Rapid diagnostic tests for malaria parasites. Clin. Microbiol. Rev. 15(1), 66–78 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kifude, C.M., Rajasekariah, H.G., Sullivan, D.J., Stewart, V.A., Angov, E., Martin, S.K., Diggs, C.L., Waitumbi, J.N.: Enzyme-linked immunosorbent assay for detection of Plasmodium falciparum histidine-rich protein 2 in blood, plasma, and serum. Clin. Vaccine Immunol. 15(6), 1012–1018 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Butterworth, A.S., Robertson, A.J., Ho, M.F., Gatton, M.L., McCarthy, J.S., Trenholme, K.R.: An improved method for undertaking limiting dilution assays for in vitro cloning of Plasmodium falciparum parasites. Malar. J. 10, 95 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dondorp, A.M., et al.: Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2(8), e204 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wong, R., Tse, H. (eds.): Lateral Flow Immunoassay. Humana Press, New York (2010)Google Scholar
  11. 11.
    Posthuma-Trumpie, G.A., Korf, J., van Amerongen, A.: Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393(2), 569–582 (2009)CrossRefPubMedGoogle Scholar
  12. 12.
    Armbruster, D.A., Pry, T.: Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29, S49–S52 (2008)PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hendriksen, I.C.E., et al.: Evaluation of a PfHRP(2) and a pLDH-based rapid diagnostic test for the diagnosis of severe malaria in 2 populations of African children. Clin. Infect. Dis. 52(9), 1100–1107 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Marquart, L., Butterworth, A., McCarthy, J.S., Gatton, M.L.: Modelling the dynamics of Plasmodium falciparum histidine-rich protein 2 in human malaria to better understand malaria rapid diagnostic test performance. Malar. J. 11, 74 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fridley, G.E., Holstein, C.A., Oza, S.B., Yager, P.: The evolution of nitrocellulose as a material for bioassays. MRS Bull. 38(4), 326–330 (2013)CrossRefGoogle Scholar
  16. 16.
    Fu, E., Lutz, B., Kauffman, P., Yager, P.: Controlled reagent transport in disposable 2D paper networks. Lab Chip. 10(7), 918–920 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fu, E., Ramsey, S., Kauffman, P., Lutz, B., Yager, P.: Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10(1), 29–35 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fu, E., Kauffman, P., Lutz, B., Yager, P.: Chemical signal amplification in two-dimensional paper networks. Sens. Actuators B Chem. 149(1), 325–328 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fu, E., Liang, T., Houghtaling, J., Ramachandran, S., Ramsey, S.A., Lutz, B., Yager, P.: Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal. Chem. 83(20), 7941–7946 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cho, I.H., Seo, S.M., Paek, E.H., Paek, S.H.: Immunogold-silver staining-on-a-chip biosensor based on cross-flow chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(2), 271–277 (2010)CrossRefPubMedGoogle Scholar
  21. 21.
    Holgate, C.S., Jackson, P., Cowen, P.N., Bird, C.C.: Immunogold silver dtaining – new method of immunostaining with enhanced sensitivity. J. Histochem. Cytochem. 31(7), 938–944 (1983)CrossRefPubMedGoogle Scholar
  22. 22.
    Weipoltshammer, K., Schofer, C., Almeder, M., Wachtler, F.: Signal enhancement at the electron microscopic level using Nanogold and gold-based autometallography. Histochem. Cell Biol. 114(6), 489–495 (2000)PubMedGoogle Scholar
  23. 23.
    Fu, E., Liang, T., Spicar-Mihalic, P., Houghtaling, J., Ramachandran, S., Yager, P.: Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal. Chem. 84(10), 4574–4579 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Spicar-Mihalic, P., Toley, B., Houghtaling, J., Liang, T., Yager, P., Fu, E.: CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J. Micromech. Microeng. 23, 067003 (2013) (6pp)Google Scholar
  25. 25.
    Lutz, B., Liang, T., Fu, E., Ramachandran, S., Kauffman, P., Yager, P.: Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip. 13(14), 2840–2847 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Toley, B.J., McKenzie, B., Liang, T., Buser, J.R., Yager, P., Fu, E.: Tunable-delay shunts for paper microfluidic devices. Anal. Chem. 85(23), 11545–11552 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Linares, E.M., Kubota, L.T., Michaelis, J., Thalhammer, S.: Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J. Immunol. Methods. 375(1–2), 264–270 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    Ramachandran, S., Fu, E., Lutz, B., Yager, P.: Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst. 139(6), 1456–1462 (2014)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of WashingtonSeattleUSA
  2. 2.School of Chemical, Biological, and Environmental Engineering, Oregon State UniversityCorvallisUSA

Personalised recommendations