Advertisement

Proprioception After Hip Injury, Surgery, and Rehabilitation

  • John Nyland
  • Omer Mei-Dan
  • Kenneth MacKinlay
  • Mahmut Calik
  • Defne Kaya
  • Mahmut Nedim Doral
Chapter

Abstract

This chapter discusses hip function, surgery, and rehabilitation from a proprioceptive, neuromuscular control basis. Sections include hip anatomy and pathomechanics, proprioceptive and kinesthetic considerations, hip evaluation and treatment, the hip and core/lower extremity functional linkage, and therapeutic considerations that optimize hip function.

Keywords

Hip Proprioception Rehabilitation Surgery 

References

  1. 1.
    Delp SL, Suryanarayanan S, Murray WM, et al. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech. 2001;34:371–5.Google Scholar
  2. 2.
    Gerlach UJ, Lierse W. Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat. 1990;139:11–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Gottschalk F, Kourosh S, Leveau B. The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat. 1989;166:179–89.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Nyland J, Kuzemchek S, Parks M, et al. Femoral anteversion influences vastus medialis and gluteus medius EMG amplitude: composite hip abductor EMG amplitude ratios during isometric combined hip abduction-external rotation. J Electromyogr Kinesiol. 2004;14:255–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Brewster SF. The development of the ligament of the head of the femur. Clin Anat. 1991;4:245–55.CrossRefGoogle Scholar
  6. 6.
    Gray AJ, Villar RN. The ligamentum teres of the hip: an arthroscopic classification of its pathology. Arthroscopy. 1997;13:575–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Kivlan B, Clemente FR, Martin RL, et al. Function of the ligamentum teres during multi-planar movement of the hip joint. Knee Surg Sports Traumatol Arthrosc. 2013;21:1664–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Dehao BW, Bing TK, Young JL. Understanding the ligamentum teres of the hip: a histological study. Acta Orthop Bras. 2015;23:29–33.CrossRefGoogle Scholar
  9. 9.
    Philippon MJ, Rasmussen MT, Turnbull TL, et al. Structural properties of the native ligamentum teres. Orthop J Sports Med. 2014;2:2325967114561962.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Martin RL, Kivlan BR, Clemente FR. A cadaveric model for ligamentum teres function: a pilot study. Knee Surg Sports Traumatol Arthrosc. 2012;21:1689–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Bardakos NV, Villar RN. The ligamentumteres of the adult hip. J Bone Joint Surg Br. 2009;91:8–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Leunig M, Beck M, Stauffer E, et al. Free nerve endings in the ligamentum capitis femoris. Acta Orthop Scand. 2000;71:452–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Sarban S, Baba F, Kocabey Y, et al. Free nerve endings and morphological features of the ligamentum capitis femoris in developmental dysplasia of the hip. J Pediatr Orthop. 2007;16:351–6.CrossRefGoogle Scholar
  14. 14.
    Byrd T. Overview and history of hip arthroscopy. In: Byrd T, editor. Operative hip arthroscopy. New York: Springer; 2013. p. 1–6.CrossRefGoogle Scholar
  15. 15.
    McCarthy JC, Lee JA. History of hip arthroscopy: challenges and opportunities. Clin Sports Med. 2011;30:217–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Jayasehera N, Aprato A, Villar RN. Hip arthroscopy in the presence of acetabular dysplasia. Open Orthop J. 2015;9:185–7.CrossRefGoogle Scholar
  17. 17.
    Gupta A, Redmond JM, Stake CE, et al. Does the femoral cam lesion regrow after osteoplasty for femoroacetabular impingement? Two-year follow-up. Am J Sports Med. 2014;42:2149–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Gardner E. The innervation of the hip joint. Anat Rec. 1948;101:353–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Rossi A, Grigg P. Characteristics of hip joint mechanoreceptors in the cat. J Neurophysiol. 1982;47:1029–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Hurley MV. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum Dis Clin N Am. 1999;25:283–98.CrossRefGoogle Scholar
  21. 21.
    Moraes MRB, Cavalcante MLC, Leite JAD, et al. The characteristics of the mechanoreceptors of the hip with arthrosis. J Orthop Surg Res. 2011;6:58.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nyland J, Wera J, Henzman C, et al. Preserving knee function following osteoarthritis diagnosis: a sustainability theory and social ecology clinical commentary. Phys Ther Sport. 2015;16:3–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Shakoor N, Lee KJ, Fott LF, et al. Generalized vibratory deficits in osteoarthritis of the hip. Arth Rheum. 2008;59:1237–40.CrossRefGoogle Scholar
  24. 24.
    Seides RM, Tan V, Hunt J, et al. Anatomy, histologic features, vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001;382:232–40.CrossRefGoogle Scholar
  25. 25.
    Alzaharani A, Bali K, Gudena R, et al. The innervation of the human acetabular labrum and hip joint: an anatomic study. BMC Musculoskelet Disord. 2014;15:41.  https://doi.org/10.1186/1471-2474-15-41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Haversath M, Hanke J, Landgraeber S, et al. The distribution of nociceptive innervation in the painful hip: a histological investigation. Bone Joint. 2013;J95:770–6.CrossRefGoogle Scholar
  27. 27.
    Kampa RJ, Prasthofer A, Lawrence-Watt DJ, et al. The internervous safe zone for incision of the capsule of the hip. J Bone Joint Surg Br. 2007;89:971–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Gerhardt M, Johnson K, Atkinson R, et al. Characterisation and classification of the neural anatomy in the human hip joint. Hip Int. 2012;22:75–81.CrossRefPubMedGoogle Scholar
  29. 29.
    Birnbaum K, Prescher A, Hessler S, et al. The sensory innervation of the hip joint—an anatomical study. Surg Radiol Anat. 1997;19:371–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Dee R. Structure and function of hip joint innervation. Ann R Coll Surg Engl. 1969;45:357–74.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Simons MJ, Amin NH, Cushner FD, et al. Characterization of the neural anatomy in the hip joint to optimize periarticular regional anesthesia in total hip arthroplasty. J South Orthop Assoc. 2015;24(4):221–4.Google Scholar
  32. 32.
    Poultsides LA, Bedi A, Kelly BT. An algorithmic approach to mechanical hip pain. HSS J. 2012;8:213–24.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pel JJM, Spoor CW, Pool-Goudzwaard AL, et al. Biomechanical analysis of reducing sacroiliac joint shear load by optimization of pelvic muscle and ligament forces. Ann Biomed Eng. 2008;36:415–24.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ross J. Is the sacroiliac joint mobile and how should it be treated? Br J Sports Med. 2000;34:226.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gebhart JJ, Streit JJ, Bedi A, et al. Correlation of pelvic incidence with cam and pincer lesions. Am J Sports Med. 2014;42:2649–53.CrossRefPubMedGoogle Scholar
  36. 36.
    Legaye J. Influence of the sagittal balance of the spine on the anterior pelvic plane and on the acetabular orientation. Int Orthop. 2009;33:1695–700.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hack K, Di Primio G, Rakhra K, et al. Prevalence of cam-type femoro-acetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92:2436–44.CrossRefPubMedGoogle Scholar
  38. 38.
    Yoshimoto H, Sato S, Masuda T, et al. Spinopelvic alignment in patients with osteoarthrosis of the hip: a radiographic comparison to patients with low back pain. Spine. 2005;30:1650–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Larson CM. Sports hernia/athletic pubalgia: evaluation and management. Sports Health. 2014;6:139–44.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Birmingham PM, Kelly BT, Jacobs R, et al. The effect of dynamic femoro-acetabular impingement on pubic symphysis motion. A cadaveric study. Am J Sports Med. 2012;40:1113–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Dietz V, Berger W. Interlimb coordination of posture in patients with spastic paresis: impaired function of spinal reflexes. Brain. 1984;107:965–78.CrossRefPubMedGoogle Scholar
  42. 42.
    Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input form joint and load receptors. Brain. 2002;125:2626–34.CrossRefPubMedGoogle Scholar
  43. 43.
    Dietz V, Horstmann GA, Berger W. Interlimb coordination of leg muscle activation during perturbation of stance in humans. J Neurophysiol. 1989;62:680–93.CrossRefPubMedGoogle Scholar
  44. 44.
    Granacher U, Wolf I, Wehrle A, et al. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults. J Neuroeng Rehabil. 2010;7:56.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Granacher U, Bridenbaugh S, Muehlbauer T, et al. Age-related effects on postural control under multi-task conditions. Gerontology. 2011;57:247–55.CrossRefPubMedGoogle Scholar
  46. 46.
    Kressig RW, Herrmann FR, Grandjean P, et al. Gait variability while dural-tasking: fall predictor in older inpatients? Aging Clin Exp Res. 2008;20:123–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Beauchet O, Annweiler C, Dubost V, et al. Stops waling when talking: a predictor of falls in older adults. Eur J Neurol. 2009;16:786–95.CrossRefPubMedGoogle Scholar
  48. 48.
    Freeman M. Treatment of ruptures of the lateral ligament of the ankle. J Bone Joint Surg Br. 1965;47:661–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Missaoui B, Portero P, Bendaya S, et al. Posture and equilibrium in orthopedic and rheumatologic diseases. Clin Neurophysiol. 2008;33:447–57.CrossRefGoogle Scholar
  50. 50.
    Armstrong B, McNair P, Taylor D. Head and neck position sense. Sports Med. 2008;38:101–17.CrossRefPubMedGoogle Scholar
  51. 51.
    Boyd-Clark LC, Briggs CA, Galea MP. Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine (Phila PA 1976). 2002;27:694–701.CrossRefGoogle Scholar
  52. 52.
    McCloskey DI. Kinesthetic sensibility. Physiol Rev. 1978;58:763–820.CrossRefPubMedGoogle Scholar
  53. 53.
    Haghpanah SA, Farahmand F, Zohoor H. Modular neuromuscular control of human locomotion by central pattern generator. J Biomech. 2017;53:154–62.CrossRefPubMedGoogle Scholar
  54. 54.
    MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther. 2002;82:69–83.CrossRefPubMedGoogle Scholar
  55. 55.
    Burgess PR, Wei JY, Clark FJ, et al. Signaling of kinesthetic information by peripheral sensory receptors. Annu Rev Neurosci. 1982;5:171–87.CrossRefPubMedGoogle Scholar
  56. 56.
    Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008;13:2–11.CrossRefPubMedGoogle Scholar
  57. 57.
    Kulkarni V, Chandy MJ, Babu KS. Quantitative study of muscle spindles in suboccipital muscles of human fetuses. Neurol India. 2001;49:355–9.PubMedGoogle Scholar
  58. 58.
    Liu JX, Thornell LE, Pedrosa-Domeliof F. Muscle spindles in the deep muscles of the human neck. A morphological and immunocytochemical study. J Histochem Cytochem. 2003;51:175–86.CrossRefPubMedGoogle Scholar
  59. 59.
    Banks RW. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings. J Anat. 2009;214:859–87.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat. 2006;208:753–68.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Voss VH. Tabelle der absoluten und relative muskelspindelzahlen der menschlichen skelettmuskulatur. Anat Anz. 1971;129:562–72.PubMedGoogle Scholar
  62. 62.
    Cibulka MT, Rose SJ, Delitto A, et al. Hamstring muscle strain treated by mobilizing the SIJ. Phys Ther. 1986;66:1220–3.CrossRefPubMedGoogle Scholar
  63. 63.
    Schamberger W. The malalignment syndrome: implications for medicine and sports. Edinburgh: Churchill Livingstone; 2002.Google Scholar
  64. 64.
    Gabbe BJ, Finch CF, Bennell KL, et al. Risk factors for hamstring injuries in community level Australian football. Br J Sports Med. 2005;39:106–10.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Dowling DJ. Evaluation of the pelvis. In: DiGiovanna EL, Schiowitz S, Dowling D, editors. An osteopathic approach to diagnosis and treatment. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. p. 304–22.Google Scholar
  66. 66.
    Day BL, Marsden CD, Obeso JA, et al. Reciprocal inhibition between the muscles of the human forearm. J Physiol. 1984;349:519–34.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Makofsky H, Panicker S, Abbruzzese J, et al. Immediate effect of grade IV inferior hip joint mobilization on hip abductor torque: a pilot study. J Manual Manipulative Ther. 2007;15:103–11.CrossRefGoogle Scholar
  68. 68.
    Yerys S, Makofsky H, Byrd C, et al. Effect of mobilization of the anterior hip capsule on gluteus maximus strength. J Manual Manipulative Ther. 2002;10:218–24.CrossRefGoogle Scholar
  69. 69.
    Elphington J. Stability, sport and performance movement: great technique without injury. Berkeley, CA: Lotus Publishing; 2008.Google Scholar
  70. 70.
    Fox M. Effect on hamstring flexibility of hamstring stretching compared to hamstring stretching and sacroiliac joint manipulation. Clin Chiropr. 2006;9:21–32.CrossRefGoogle Scholar
  71. 71.
    Pool-Goudzwaard AL, Vleeming A, Stoeckart R, et al. Insufficient lumbopelvic stability: a clinical, anatomical and biomechanical approach to ‘a-specific’ low back pain. Man Ther. 1998;3:12–20.CrossRefPubMedGoogle Scholar
  72. 72.
    Janda V. Muscles, central nervous motor regulation and back problems. In: Korr I, editor. The neurobiological mechanisms in manipulative therapy. New York: Plenum Press; 1978.Google Scholar
  73. 73.
    Norris C. Spinal stabilization: an exercise programme to enhance lumbar stabilization. Physiotherapy. 1995;81:31–8.CrossRefGoogle Scholar
  74. 74.
    Hewett TE, Myer GD. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev. 2011;39:161–6.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Stearns KM, Powers CM. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med. 2014;42:602–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Zati A, Degli Esposti S, Spagnoletti C, et al. Does total hip arthroplasty mean sensorial and proprioceptive lesion? A clinical study. Chir Organi Mov. 1997;82:239–47.Google Scholar
  77. 77.
    Ishii Y, Tojo T, Terajima K, et al. Intracapsular components do not change hip proprioception. J Bone Joint Surg Br. 1999;81:345–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Agricola R, Waarsing J, Arden N, et al. Cam impingement of the hip—a risk factor for hip osteoarthritis. Nat Rev Rheumatol. 2013;9:630–4.CrossRefPubMedGoogle Scholar
  79. 79.
    Freke MD, Kemp J, Svege I, et al. Physical impairments in symptomatic femoroacetabular impingement: a systematic review of the evidence. Br J Sports Med. 2016;50:1180.CrossRefPubMedGoogle Scholar
  80. 80.
    Kemp J, Makdissi M, Schache A, et al. Is quality of life following hip arthroscopy in patients with chondrolabral pathology associated with impairments in hip strength or range of motion? Knee Surg Sports Traumatol Arthrosc. 2015;24:3955–61.  https://doi.org/10.1007/s00167-015-3679-4.CrossRefPubMedGoogle Scholar
  81. 81.
    Enseki KR, Kohlrieser D. Rehabilitation following hip arthroscopy: an evolving process. Int J Sports Phys Ther. 2014;9:765–73.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • John Nyland
    • 1
  • Omer Mei-Dan
    • 2
  • Kenneth MacKinlay
    • 3
  • Mahmut Calik
    • 4
  • Defne Kaya
    • 4
  • Mahmut Nedim Doral
    • 5
  1. 1.Kosair Charities College of Health and Natural SciencesSpalding UniversityLouisvilleUSA
  2. 2.Orthopaedic Surgery, University of Colorado HospitalUniversity of ColoradoAuroraUSA
  3. 3.Department of Orthopaedic SurgeryUniversity of LouisvilleLouisvilleUSA
  4. 4.Department of Physiotherapy and Rehabilitation, Faculty of Health SciencesUskudar UniversityIstanbulTurkey
  5. 5.Department of Orthopedics and TraumatologyUfuk University, Faculty of MedicineAnkaraTurkey

Personalised recommendations