Advertisement

Proprioception After Hand and Wrist Injury, Surgery, and Rehabilitation

  • Cigdem Oksuz
  • Deran Oskay
  • Gazi Huri
Chapter

Abstract

Several conditions may impair the proprioception and sensorimotor function of hand and wrist. Especially upper extremity conditions such as carpal tunnel syndrome, distal radius fracture, metacarpal fractures, dislocation, and complex regional pain syndrome are the common causes of the proprioception deficits. There is still a lack of consensus in the literature about a simple, clinically suitable, and reliable method to assess proprioception of hand or wrist. Although its reliability and validity are still criticized, using a goniometer to easily assess joint position sense of the hand and wrist seems to be the simple and reliable method. Detection of passive motion, joint position reproduction, and active movement extent discrimination are the main testing techniques reported in the literature for assessing proprioception of proximal joints and hand/wrist. Portable novel devices are also introduced in the literature to assess proprioception of the hand and wrist. Proprioceptive training to be applied to the wrist should be sustained in two phases: late and early phases post-injury. Proprioceptive exercises done in the early phase could prevent functional demands that may occur due to the prolonged immobilization, pain, edema, and degreased active range of motion. Late-phase rehabilitation methods are particularly used to increase muscle strength and joint stabilization. The factor that will shape the strengthening programs principally is tissue healing.

Keywords

Elbow Wrist Injury Surgery Rehabilitation Proprioception 

References

  1. 1.
    Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods. J Sport Health Sci. 2016;5(1):80–90.CrossRefGoogle Scholar
  2. 2.
    Lephart SM, Myers JB, Bradley JP, Fu FH. Shoulder proprioception and function following thermal capsulorraphy. Arthroscopy. 2002;18(7):770–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Hillier S, Immink M, Thewlis D. Assessing proprioception: a systematic review of possibilities. Neurorehabil Neural Repair. 2015;29(10):933–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Lincoln NB, Crow J, Jackson J, Waters G, Adams S, Hodgson P. The unreliability of sensory assessments. Clin Rehabil. 1991;5(4):273–82.CrossRefGoogle Scholar
  5. 5.
    Riemann BL, Myers JB, Lephart SM. Sensorimotor system measurement techniques. J Athl Train. 2002;37(1):85–9.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hagert E. Proprioception of the wrist joint: a review of current concepts and possible implications on the rehabilitation of the wrist. J Hand Ther. 2010;23(1):2–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Schmidt L, Depper L, Kerkhoff G. Effects of age, sex and arm on the precision of arm position sense—left-arm superiority in healthy right-handers. Front Hum Neurosci. 2013;24(7):915.Google Scholar
  8. 8.
    Li KZ, Lindenberger U. Relations between aging sensory/sensorimotor and cognitive functions. Neurosci Biobehav Rev. 2002;26(7):777–83.CrossRefPubMedGoogle Scholar
  9. 9.
    Adamo DE, Martin BJ, Brown SH. Age-related differences in upper limb proprioceptive acuity. Percept Mot Skills. 2007;104(3 Suppl):1297–309.CrossRefPubMedGoogle Scholar
  10. 10.
    Solgaard S, Carlsen A, Kramhøft M, Petersen V. Reproducibility of goniometry of the wrist. Scand J Rehabil Med. 1985;18(1):5–7.Google Scholar
  11. 11.
    Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP. Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev. 2009;33(3):271–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Gay A, Harbst K, Kaufman KR, Hansen DK, Laskowski ER, Berger RA. New method of measuring wrist joint position sense avoiding cutaneous and visual inputs. J Neuroeng Rehabil. 2010;7(1):5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Leibowitz N, Levy N, Weingarten S, Grinberg Y, Karniel A, Sacher Y, et al. Automated measurement of proprioception following stroke. Disabil Rehabil. 2008;30(24):1829–36.CrossRefPubMedGoogle Scholar
  14. 14.
    Hewett TE, Paterno MV, Myer GD. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin Orthop Relat Res. 2002;402:76–94.CrossRefGoogle Scholar
  15. 15.
    Clark F, Burgess R, Chapin J. Proprioception with the proximal interphalangeal joint of the index finger. Brain. 1986;109(6):1195–208.CrossRefPubMedGoogle Scholar
  16. 16.
    Wycherley A, Helliwell P, Bird H. A novel device for the measurement of proprioception in the hand. Rheumatology. 2005;44(5):638–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Han J, Waddington G, Anson J, Adams R. A novel device for the measurement of functional finger pinch movement discrimination. Appl Mech Mater. 2011;66–68:620–5.CrossRefGoogle Scholar
  18. 18.
    Cho S, Ku J, Cho YK, Kim IY, Kang YJ, Jang DP, et al. Development of virtual reality proprioceptive rehabilitation system for stroke patients. Comput Methods Prog Biomed. 2014;113(1):258–65.CrossRefGoogle Scholar
  19. 19.
    Masia L, Casadio M, Squeri V, Cappello L, De Santis D, Zenzeri J, et al. Enhancing recovery of sensorimotor functions: the role of robot generated haptic feedback in the re-learning process. In: Artemiadis P, editor. Neuro-robotics, Trends in augmentation of human performance, vol. 2. Dordrecht: Springer; 2014. p. 285–316.Google Scholar
  20. 20.
    Cappello L, Contu S, Elangovan N, Khosravani S, Konczak J, Masia L. Evaluation of wrist joint proprioception by means of a robotic device. Ubiquitous Robots and Ambient Intelligence (URAI), 11th International Conference of the IEEE, 2014. p. 531–4.Google Scholar
  21. 21.
    Cappello L, Elangovan N, Contu S, Khosravani S, Konczak J, Masia L. Robot-aided assessment of wrist proprioception. Front Hum Neurosci. 2015;9:198.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marini F, Squeri V, Morasso P, Masia L. Wrist proprioception: amplitude or position coding? Front Neurorobot. 2016;10:13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Marini F, Squeri V, Morasso P, Campus C, Konczak J, Masia L. Robot-aided developmental assessment of wrist proprioception in children. J Neuroeng Rehabil. 2017;14(1):3.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ingemanson ML, Rowe JB, Chan V, Wolbrecht ET, Cramer SC, Reinkensmeyer DJ. Use of a robotic device to measure age-related decline in finger proprioception. Exp Brain Res. 2016;234(1):83–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Contu S, Marini F, Cappello L, Masia L. Robot-assisted assessment of wrist proprioception: does wrist proprioceptive acuity follow Weber’s law? Engineering in Medicine and Biology Society (EMBC), 38th Annual International Conference of the IEEE; 2016. p. 4610–3.Google Scholar
  26. 26.
    Hoseini N, Sexton BM, Kurtz K, Liu Y, Block HJ. Adaptive staircase measurement of hand proprioception. PLoS One. 2015;10(8):e0135757.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wright ML, Adamo DE, Brown SH. Age-related declines in the detection of passive wrist movement. Neurosci Lett. 2011;500(2):108–12.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Simo L, Botzer L, Ghez C, Scheidt RA. A robotic test of proprioception within the hemiparetic arm post-stroke. J Neuroeng Rehabil. 2014;11(1):77.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bourke TC, Coderre AM, Bagg SD, Dukelow SP, Norman KE, Scott SH. Impaired corrective responses to postural perturbations of the arm in individuals with subacute stroke. J Neuroeng Rehabil. 2015;12(1):7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Adamo DE, Martin BJ. Position sense asymmetry. Exp Brain Res. 2009;192(1):87–95.CrossRefPubMedGoogle Scholar
  31. 31.
    Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44(12):3414–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Rinderknecht MD, Popp WL, Lambercy O, Gassert R. Experimental validation of a rapid, adaptive robotic assessment of the MCP joint angle difference threshold. In: Auvray M, Duriez C, editors. Haptics: neuroscience, devices, modeling, and applications, lecture notes in computer science. Berlin; Heidelberg: Springer; 2014. p. 3–10.Google Scholar
  33. 33.
    Myers JB, Lephart SM. The role of the sensorimotor system in the athletic shoulder. J Athl Train. 2000;35(3):351–63.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L. Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther. 2005;85(8):740–9.PubMedGoogle Scholar
  35. 35.
    Richie DH. Functional instability of the ankle and the role of neuromuscular control: a comprehensive review. J Foot Ankle Surg. 2001;40(4):240–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Elbert T, Sterr A, Flor H, Rockstroh B, Knecht S, Pantev C, Wienbruch C, Taub E. Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans. Exp Brain Res. 1997;117(1):161–4.CrossRefPubMedGoogle Scholar
  37. 37.
    May A. Chronic pain may change the structure of the brain. Pain. 2008;137(1):7–15.CrossRefPubMedGoogle Scholar
  38. 38.
    Price DD, Verne GN, Schwartz JM. Plasticity in brain processing and modulation of pain. Prog Brain Res. 2006;157:333–405.CrossRefPubMedGoogle Scholar
  39. 39.
    Altschuler EL, Hu J. Mirror therapy in a patient with a fractured wrist and no active wrist extension. Scand J Plast Reconstr Surg Hand Surg. 2008;42(2):110–1.CrossRefPubMedGoogle Scholar
  40. 40.
    Foell J, Bekrater-Bodmann R, Diers M, Flor H. Mirror therapy for phantom limb pain: brain changes and the role of body representation. Eur J Pain. 2014;18(5):729–39.CrossRefPubMedGoogle Scholar
  41. 41.
    Cordo P, Gurfinkel V, Brumagne S, Flores-Vieira C. Effect of slow, small movement on the vibration-evoked kinesthetic illusion. Exp Brain Res. 2005;167(3):324–34.CrossRefPubMedGoogle Scholar
  42. 42.
    White O, Proske U. Illusions of forearm displacement during vibration of elbow muscles in humans. Exp Brain Res. 2009;192(1):113–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Watson HK, Carlson L. Treatment of reflex sympathetic dystrophy of the hand with an active “stress loading” program. J Hand Surg. 1987;12(5):779–85.CrossRefGoogle Scholar
  44. 44.
    Rosén B, Lundborg G. Training with a mirror in rehabilitation of the hand. Scand J Plast Reconstr Surg Hand Surg. 2005;39(2):104–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Ezendam D, Bongers RM, Jannink MJ. Systematic review of the effectiveness of mirror therapy in upper extremity function. Disabil Rehabil. 2009;31(26):2135–49.CrossRefPubMedGoogle Scholar
  46. 46.
    Deconinck FJ, Smorenburg AR, Benham A, Ledebt A, Feltham MG, Savelsbergh GJ. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil Neural Repair. 2015;29(4):349–61.CrossRefPubMedGoogle Scholar
  47. 47.
    Skirven TM, Osterman AL, Fedorczyk J, Amadio PC. Rehabilitation of the hand and upper extremity, 2-volume set E-book: expert consult. London: Elsevier Health Sciences; 2011.Google Scholar
  48. 48.
    Handoll H, Madhok R, Howe T. Rehabilitation for distal radial fractures in adults. Cochrane Database Syst Rev. 2006;19:3.Google Scholar
  49. 49.
    Prosser R, Herbert R, LaStayo PC. Current practice in the diagnosis and treatment of carpal instability results of a survey of Australian hand therapists. J Hand Ther. 2007;20(3):239–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Lee M, Gandevia SC, Carroll TJ. Unilateral strength training increases voluntary activation of the opposite untrained limb. Clin Neurophysiol. 2009;120(4):802–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Leger AB, Milner TE. Muscle function at the wrist after eccentric exercise. Med Sci Sports Exerc. 2001;33(4):612–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Balan SA, Garcia-Elias M. Utility of the Powerball® in the invigoration of the musculature of the forearm. Hand Surg. 2008;13(02):79–83.CrossRefPubMedGoogle Scholar
  53. 53.
    Hagert E, Forsgren S, Ljung BO. Differences in the presence of mechanoreceptors and nerve structures between wrist ligaments may imply differential roles in wrist stabilization. J Orthop Res. 2005;23:757–63.CrossRefPubMedGoogle Scholar
  54. 54.
    Hagert E, Garcia-Elias M, Forsgren S, Ljung BO. Immunohistochemical analysis of wrist ligament innervation in relation to their structural composition. J Hand Surg [Am]. 2007;32(1):30–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Occupational Therapy, Faculty of Health ScienceHacettepe UniversityAnkaraTurkey
  2. 2.Department of Physiotherapy and Rehabilitation, Faculty of Health SciencesGazi UniversityAnkaraTurkey
  3. 3.Department of Orthopaedics and Traumatology, Faculty of MedicineHacettepe UniversityAnkaraTurkey

Personalised recommendations