Advertisement

Equations of State for Strongly Coupled Partially Ionized Plasmas

  • Werner EbelingEmail author
  • Vladimir E. Fortov
  • Vladimir Filinov
Chapter
Part of the Springer Series in Plasma Science and Technology book series (SSPST)

Abstract

The aim of this chapter is to extend the equation of state (EOS) found in the last three chapters to higher densities.

References

  1. A. Alastuey, Perez, Virial expansions for quantum plasmas: Fermi-Bose statistics. Phys. Rev. E 53, 5714–5728 (1996)ADSCrossRefGoogle Scholar
  2. A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the equation of state of plasmas. Phys. Rev. E 92, 047101 (2015)ADSCrossRefGoogle Scholar
  3. A. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehardt Winston, Philadelphia, 1976)zbMATHGoogle Scholar
  4. J.A. Barker, D. Henderson, J. Chem. Phys. 47, 4714 (1967)ADSCrossRefGoogle Scholar
  5. A. Becker, N. Nettelmann, B. Holst, R. Redmer, Isentropic compression of hydrogen: Probing conditions deep in planetary interiors. Phys. Rev. B 88, 045122 (2013)ADSCrossRefGoogle Scholar
  6. T.H. Berlin, E.W. Montroll, On the free energy of a mixture of ions: an extension of Kramer’s theory. J. Chem. Phys. 20, 75 (1952)ADSCrossRefGoogle Scholar
  7. D. Beule, W. Ebeling, A. Förster, Adiabatic equation of state and ionization equilibrium. Physica A 226, 719–728 (1997)ADSCrossRefGoogle Scholar
  8. D. Beule, W. Ebeling, A. Förster, H. Juranek, S. Nagel, R. Redmer, G. Röpke, Equation of state for hydrogen below 10 000 K: From the fluid to the plasma. Phys. Rev. B 59, 14177 (1999a)Google Scholar
  9. D. Beule, W. Ebeling, R. Redmer, G. Röpke, Electrical conductivity in dense hydrogen fluid and metal plasmas. Contrib. Plasma Phys. 39, 25–28 (1999b)Google Scholar
  10. D. Beule, W. Ebeling, A. Förster, H. Juranek, R. Redmer, G. Röpke, Isentropes and Hugoniot for dense hydrogen and deuterium. Phys. Rev. E 63, 060202 R (2001)Google Scholar
  11. D. Bohm, D. Pines, A collective description of electron interactions. Phys. Rev. 92, 609 (1953)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. H.P. Bonzel, A.M. Bradshaw, G. Ertl (eds.), Physics and Chemistry of Alkali Metal Adsorption, Materials Science Monographs (Elsevier, Amsterdam, 1999)Google Scholar
  13. R. Bredow, W.-D. Th Bornath, R. Redmer, Kraeft, Hypernetted chain calculations for multi-component and non-equilibrium plasmas. Control. Plasma Phys. 53, 276 (2013)ADSCrossRefGoogle Scholar
  14. R. Bredow, W.D. Th Bornath, M.W.C. Kraeft, R. Redmer, Dharmawardana, Classical-map hypernetted chain calculations for dense plasmas. Contrib. Plasma Phys. 55, 222–229 (2015)ADSCrossRefGoogle Scholar
  15. N.V. Brilliantov, Accurate first-principle equation of state for the OCP. Contrib. Plasma Phys. 38, 489 (1998)ADSCrossRefGoogle Scholar
  16. L. Brillouin, Les Statistiques Quantiques et leurs Applications, (Paris 1930) (German transl, Berlin, 1931)zbMATHGoogle Scholar
  17. A. Bunker, S. Nagel, R. Redmer, G. Röpke, Phys. Rev B 56, 3094 (1997); Control. Plasma Phys. 37, 115 (1997)Google Scholar
  18. A.V. Bushman, I.V. Lomonossov, V.E. Fortov, Equation of state of metals at high energy densities (Chernogolovka, 1992)Google Scholar
  19. J. Callaway, Energy Band Theory (Acad. Press New York 1964) (Russ. transl. Mir Moska 1968)Google Scholar
  20. D.M. Ceperley, B. Alder, Phys. Rev. Lett. 45, 566 (1980)ADSCrossRefGoogle Scholar
  21. G. Chabrier, A. Potekhin, Phys. Rev E 58, 4941 (1998)ADSCrossRefGoogle Scholar
  22. G.W. Collins, L.B. DaSilva et al., Science 281, 1178 (1998)ADSCrossRefGoogle Scholar
  23. P. Debye, E. Hückel, Theorie der Elektrolyte I. Physik. Z. 24, 185 (1923)Google Scholar
  24. L.B. DaSilva, P. Celliers et al., Phys. Rev. Lett. 78, 483 (1997)ADSCrossRefGoogle Scholar
  25. H.E. De Witt, Phys. Rev. A 14(816), 1290 (1976)ADSGoogle Scholar
  26. H.E. De Witt, M. Schlanges, A.Y. Sakakura, W.D. Kraeft, Phys. Lett. A 197, 326 (1995)ADSCrossRefGoogle Scholar
  27. N. Desbiens, P. Arnault, J. Clerouin, Parametrization of OCP. Phys. Plasmas 23(9) (2017),  https://doi.org/10.10163/1.4963388
  28. M.W.C. Dharmawardana, A review of studies on strongly-coupled Coulomb systems since the rise of DFT and SCCS 1977. Contrib. Plasma Phys. 55, 85–101 (2015)ADSCrossRefGoogle Scholar
  29. T. Dornheim, S. Groth, A. Filinov, M. Bonitz, Permutation blocking path integral Monte Carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions. New J. Phys. 17, 073017 (2015a)Google Scholar
  30. T. Dornheim, T. Schoof, S. Groth, A. Filinov, M. Bonitz, Permutation blocking path integral monte carlo approach to the uniform electron gas at finite temperature. J. Chem. Phys. 143, 204101 (2015b)Google Scholar
  31. T. Dornheim, S. Groth, T. Schoof, C. Hann, M. Bonitz, Ab initio quantum Monte Carlo simulations of the uniform electron gas without fixed nodes: The unpolarized case. Phys. Rev. B 93, 205134 (2016a)Google Scholar
  32. T. Dornheim, H. Thomsen, P. Ludwig, A. Filinov, M. Bonitz, Analyzing quantum correlations made simple. Contrib. Plasma Phys. 56, 371 (2016b)Google Scholar
  33. T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, M. Bonitz, Ab Initio quantum monte carlo simulation of the warm dense electron gas in the thermodynamic limit. Phys. Rev. Lett. 117, 156403 (2016c)Google Scholar
  34. W. Ebeling, Equation of state and Saha equation of partially ionized plasmas. Physica 38, 378 (1968)ADSCrossRefGoogle Scholar
  35. W. Ebeling, Free energy and ionization in dense plasmas of the light elements. Control. Plasma Phys. 30, 53–561 (1990)Google Scholar
  36. W. Ebeling, The work of Baimbetov on nonideal plasmas and some recent developments. Control. Plasma Phys. 56(3–4), 163–175 (2016)ADSCrossRefGoogle Scholar
  37. W. Ebeling, R. Sändig, Ann. Physik (Leipzig) 28, 289 (1973); Proc. ICPIG Contr. Papers 11, 421 (1973)Google Scholar
  38. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids, (Akademie-Verlag, Berlin, 1976) (Extended Russ. transl, Mir Moscow, 1979)Google Scholar
  39. W. Ebeling, C.V. Meister, R. Sändig, Pressure ionization in nonideal alkali plasmas. Ann. Physik 36, 321–400 (1978)Google Scholar
  40. W. Ebeling, V.F. Fortov, YuL Klimontovich, et al. (eds.), Transport Properties of Dense Plasmas (Birkhäuser, Boston, 1984)Google Scholar
  41. W. Ebeling, Free energy and ionization of dense plasma of light elements, Contr. Plasma Physics 29, 238–242 (1989); 30, 553–561 (1990), see also Inside the Sun, Proc. 121st Coll. Int. Astron. Union, Versailles 1989Google Scholar
  42. W. Ebeling, W. Richert, Pressure ionization of atoms in plasmas, Ann. Physik 39, 362 (1982); Contr. Plasma Phys. 25, 431–436 (1985)Google Scholar
  43. W. Ebeling, W. Richert, Phys. Lett. A 108, 80 (1985); Phys. Stat Sol. (b) 128, 167 (1985)Google Scholar
  44. W. Ebeling, F. Schautz, Simulations of the quantum electron gas using momentum-dependent potentials. Phys. Rev. E 56, 3498 (1997)ADSCrossRefGoogle Scholar
  45. W. Ebeling, W.D. Kraeft, D. Kremp, G. Röpke, Physica A 140, 160–168 (1986)ADSCrossRefGoogle Scholar
  46. W. Ebeling, A. Förster, W. Richert, H. Hess, Thermodynamic properties and plasma phase transitions of xenon at high pressure and high temperature. Physica A 150, 159–171 (1988)ADSCrossRefGoogle Scholar
  47. W. Ebeling, G.E. Norman, A.A. Valuev, I.A. Valuev, Contr. Plasma Phys. 39, 61 (1999a)Google Scholar
  48. W. Ebeling, W. Stolzmann, A. Förster, M. Kasch, Contr. Plasma Phys. 39, 287–306 (1999b)Google Scholar
  49. W. Ebeling, G. Norman, Coulomb Phase Transitions in Dense Plasmas. J. Stat. Phys. 110, 861–877 (2003)Google Scholar
  50. W. Ebeling, S. Hilbert, On Saha’s equation for partially ionised plasmas and Onsager’s bookkeeping rule. Eur. Phys. J. D 20, 93–101 (2002a)Google Scholar
  51. W. Ebeling, H. Hache, M. Spahn, Thermodynamics of ionization and dissociation in hydrogen plasmas including fluctuations and magnetic fields. Eur. Phys. J. D 23, 265–272 (2003)Google Scholar
  52. W. Ebeling, H. Hache, H. Juranek, R. Redmer, G. Röpke, Control. Plasma Phys. 45, 160 (2005)CrossRefGoogle Scholar
  53. W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz, G. Röpke, The influence of Pauli blocking effects on the Mott transition in dense hydrogen. J. Phys. A: Math. Theor. 42, 214033 (2009a)Google Scholar
  54. W. Ebeling, A. Förster, V.E. Fortov, V.K. Gryaznov, A.Ya. Polishchuk, Thermophysical Properties of Hot Dense Plasmas, Teubner-Verlag, Stuttgart-Leipzig, 1991; Russ. transl. R&C Dynamics 2007Google Scholar
  55. W. Ebeling, A. Förster, R. Redmer, T. Rother, M. Schlanges, ICPIG 18 (University of Wales, Invited Lectures, 1987)Google Scholar
  56. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids, ( Akademie-Verlag, Berlin, 1976) (Extended Russ. transl. Mir, Moscow, 1979)Google Scholar
  57. W. Ebeling, M. Steinberg, J. Ortner, Ionization equilibrium and EOS of low-temperature hydrogen plasmas. Phys. Rev. E 61, 2290 (2000)ADSCrossRefGoogle Scholar
  58. J. Ebeling, S. Hilbert, H. Krienke, On Bjerrum’s mass action law for electrolytes and Onsager’s bookkeeping rule. J. Mol. Liquids 96/97, 409 (2002)Google Scholar
  59. W. Ebeling, MYu. Romanovsky, I.M. Sokolov, Velocity distributions and kinetic equations for plasmas including Levy type power law tails. Contr. Plasma Phys. 49, 704–712 (2009)CrossRefGoogle Scholar
  60. L.T. Erimbetova, A.E. Davletov, Y.S. ZhA Kudyshev, Mukhametkarimov. Contrib. Plasma Phys. 53, 414 (2013)ADSCrossRefGoogle Scholar
  61. H. Falkenhagen, Theorie der Elektrolyte Hirzel (Leipzig 1971)Google Scholar
  62. M.E. Fisher, J. Stat. Phys. 75, 1 (1994)ADSCrossRefGoogle Scholar
  63. M.E. Fisher, Y. Levin, Phys. Rev. Lett. 71, 2138 (1993)CrossRefGoogle Scholar
  64. V. Fortov, M. Mochalov et al., Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
  65. V.E. Fortov, Extreme States of Matter (in Russian) (FizMatGis, Moskva, 2009,2015)Google Scholar
  66. V.E. Fortov, Extreme States of Matter: On earth and in the cosmos, the Frontiers Collection (Springer, Berlin, 2011)zbMATHCrossRefGoogle Scholar
  67. V.E. Fortov, Equation of state from the ideal gas to the quark–gluon plasma (in Russ.) (Fizmatgis, Moskva 2013)Google Scholar
  68. A. Förster, T. Kahlbaum, W. Ebeling, High Press. Res. 7, 375 (1991)ADSCrossRefGoogle Scholar
  69. A. Förster, T. Kahlbaum, A. Rickert, Z. Physik D Suppl. 21, 171 (1991)CrossRefGoogle Scholar
  70. A. Förster, T. Kahlbaum, W. Ebeling, Equation of state and pase diagram of fluid helium in the region of partial ionization. Laser Part. Beams 10, 253–262 (1992)ADSCrossRefGoogle Scholar
  71. A. Förster, D. Beule, H. Conrads, W. Ebeling, Highly ionized carbon in capillary discharge plasma. Control. Plasma Phys. 38, 655–660 (1998)ADSCrossRefGoogle Scholar
  72. J.P. Freiberg, Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2007)CrossRefGoogle Scholar
  73. M. French, T.R. Mattsson, N. Nettelmann, R. Redmer, Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79, 054107 (2009)ADSCrossRefGoogle Scholar
  74. S.H. Glenzer, R. Redmer, Rev. Mod. Phys. 81, 1625 (2009)ADSCrossRefGoogle Scholar
  75. S. Groth, T. Dornheim, M. Bonitz, Free energy of the uniform electron gas: Testing analytical models against first principle results, Control. Plasma Phys. submitted (2016)Google Scholar
  76. P. Haronska, D. Kremp, M. Schlanges, Equation of state, composition and phase transitions in hydrogen plasma. Wiss. Z. Uni Rostock 36, 98–102 (1987)Google Scholar
  77. F. Hensel, S. Juengst, F. Noll, R. Winter, in In Localisation and Metal Insulator Transitions, ed. by D. Adler, H. Fritsche (Plenum Press, New York, 1985)Google Scholar
  78. F. Hensel, W.W. Warren Jr., Fluid Metals, The Liquid-Vapor Transition (Princeton University Press, Princeton, 2014)Google Scholar
  79. N.C. Holmes, M. Ross, W.-J. Nellis, Phys. Rev. B 52, 15833 (1995)ADSCrossRefGoogle Scholar
  80. L. Holmlid, Heat generation above break-even from laser-induced fusion in ultra-dense deuterium, AIP Advances 5, no. 087129 (2015a)Google Scholar
  81. L. Holmlid, MeV particles in a decay chain process from laser-induced processes in ultra-dense deuterium D(0). Int. J. Mod. Phys. E. Nucl. Phys. 24, 1550026 (2015b)Google Scholar
  82. B. Holst, R. Redmer, M.P. Desjarlais, Phys. Rev. B 77, 184201 (2008)ADSCrossRefGoogle Scholar
  83. B. Holst, M. French, R. Redmer, Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Phys. Rev. B 83, 235120 (2011)ADSCrossRefGoogle Scholar
  84. S.X. Hu, V.N. Goncharov, T.R. Boehly, R.L. McCrory, S. Skupsky, L.A. Collins, Impact of first-principles properties of deuterium-tritium on inertial confinement fusion target designs. Phys. Plasmas 22(5), 056304 (2015)ADSCrossRefGoogle Scholar
  85. S.X. Hu et al., First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications. Phys. Plasmas 23, 042704 (2016)ADSCrossRefGoogle Scholar
  86. S. Ichimaru, Basic principles of plasma physics (Addison-Wesley, Benjamin London, 1973)Google Scholar
  87. S. Ichimaru, Statistical Plasma Physics: II (Condensed Plasmas, Addison-Wesley, Reading, MA, 1994)Google Scholar
  88. S. Ichimaru, S. Tanaka, Phys. Rev. A 32, 1790 (1985)ADSCrossRefGoogle Scholar
  89. S. Ichimaru, H. Iyetomi, S. Tanaka, Phys. Reports 149, 91 (1987)ADSCrossRefGoogle Scholar
  90. S. Ichimaru, Statistical Plasma physics (Addison-Wesley, Redwood City, 1992)Google Scholar
  91. S. Ichimaru, Nuclear fusion in dense plasmas. Rev. Mod. Phys. 65, 255 (1993)ADSCrossRefGoogle Scholar
  92. H. Juranek, R. Redmer, G. Röpke, V.E. Fortov, A.A. Pyalling, A comparative study for the equation of state of dense fluid hydrogen. Contrib. Plasma Phys. 39(3), 251–261 (1999)ADSCrossRefGoogle Scholar
  93. T. Kahlbaum, The quantum-diffraction term in the free energy for Coulomb plasma, effective-potential approach. J. Phys. France 10, Pr5-455 (2000)Google Scholar
  94. A.S. Kaklyugin, Teplophys. Vyss. Temp. 23, 217 (1985)Google Scholar
  95. G. Kalman (ed.), Strongly Coupled Coulomb Systems (Pergamon Press, 1988)Google Scholar
  96. G. Kelbg, Quantenstatistik der gase mit coulomb-wechselwirkung. Ann. Physik (Leipzig) 12(219–224), 354–360 (1963)ADSMathSciNetCrossRefGoogle Scholar
  97. K. Kilimann, W. Ebeling, Energy gap and line shifts for H-like ions in dense plasmas, Z. Naturforschung 45a, 613–617 (1990)Google Scholar
  98. YuL Klimontovich, Statistical Theory of None Quilibrium Processes in Plasmas, Izdat MGU 1964 (Engl. transl. Pergamon, Oxford, 1967)Google Scholar
  99. Yu.L. Klimontovich, Statistical physics, in Russ. Nauka 1982; (Engl. Harwood New York 1986)Google Scholar
  100. M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Science 348(6242), 1455–1460 (2015)ADSCrossRefGoogle Scholar
  101. D.V. Knyazev, P.R. Levashov, Ab initio calculation of thermodynamic, transport, and optical properties of CH\(_2\) plastics. Phys. Plasmas 22, 035303 (2015)CrossRefGoogle Scholar
  102. W.D. Kraeft, D. Kremp, G. Röpke, Direct linear term in the equation of state of plasmas. Phys. Rev. E 91, 013108 (2015)ADSCrossRefGoogle Scholar
  103. W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Pergamon Press, Berlin, 1986)CrossRefGoogle Scholar
  104. W.D. Kraeft, M. Schlanges, Physics of strogly coupled plasmas (World Scientific, Singapore, 1996), pp. 49–58CrossRefGoogle Scholar
  105. W.D. Kraeft, W. Ebeling, D. Kremp, G. Röpke, Thermodynamic functions, ionization equilibrium and phase transitions in Coulomb systems. Ann. Physik (Leipzig) 45, 429–442 (1988)ADSCrossRefGoogle Scholar
  106. H.A. Kramers, Investigations on the free energy of a mixture of ions. Proc. Koninkl. Akademie v. Wetenschappen 30, 145–158 (1927)zbMATHGoogle Scholar
  107. D. Kremp, G. Schmitz, Z. Naturforschung 22a, 1366 (1967)Google Scholar
  108. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)zbMATHGoogle Scholar
  109. J.D. Kress, B. Militzer, Impact of first principles properties of deuterium-tritium on inertial confinement fusion target designs. Phys. Plasmas 22, 056304 (2015)ADSCrossRefGoogle Scholar
  110. A. Lankin, G. Norman, Density and nonideality effects in plasmas. Control. Plasma Phys. 49, 723–731 (2009)ADSCrossRefGoogle Scholar
  111. A.I. Larkin, Zh. eksp. teor. Fiz. (in Russ.) 38, 1896 (1960)Google Scholar
  112. B.P. Lee, M.E. Fisher, Phys. Rev. Lett. 76, 2906 (1996); Y. Levin, M.E. Fisher, Phys. A 225, 23 (1996). Europhys. Lett. 39, 3 (1997)CrossRefGoogle Scholar
  113. H. Lehmann, W. Ebeling, Coulomb phase transitions in symmetrical quantum systems, Phys. Rev. E 54, 2451–2457 (1996); see also Ann. Physik (Leipzig) 45, 529 (1988)Google Scholar
  114. T.J. Lenosky, J.D. Kress, L.A. Collins, I. Kwon, Phys. Rev. B 55, R11 907 (1997)Google Scholar
  115. J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933 (1995),  https://doi.org/10.1063/1.871025
  116. W. Lorenzen, B. Holst, R. Redmer, Metallization in hydrogen-helium mixtures. Phys. Rev. B 84, 235109 (2011)ADSCrossRefGoogle Scholar
  117. W.R. Magro, D.M. Ceperley, C. Pierleoni, B. Bernu, Phys. Rev. Lett. 76, 1240 (1996)ADSCrossRefGoogle Scholar
  118. B. Militzer, D. Ceperley, Phys. Rev. Lett. 85, 1890 (2000)ADSCrossRefGoogle Scholar
  119. A.G. Moreira, M.M. da Gama, M.E. Fisher, J. Chem. Phys. 110, 10058 (1999)ADSCrossRefGoogle Scholar
  120. S. Nakai, K. Mima, Y. Kitagawa, S. Sakabe, Y. Izawa, M. Nakatsuka, M. Yamanaka, H. Fujita, T. Jitsuno, T. Kanabe, N. Miyanaga, K. Tsubakimoto, S. Motokoshi, H. Kiriyama, H. Matsui, H. Takabe, T. Norimatsu, M. Takagi, Y. Kozaki, T. Yamanaka, C. Yamanaka, H. Kan, T. Hiruma, Development of inertial fusion energy. AIP Conf. Proc. 406, 84 (1997),  https://doi.org/10.1063/1.53510
  121. M.A. Morales, C. Pierleoni, E. Schwegler, D.M. Ceperley, Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. PNAS 110, 2799–2803 (2010)Google Scholar
  122. W.J. Nellis, S.T. Weir, A.C. Mitchell, Phys. Rev. B 50, 3434 (1999)ADSCrossRefGoogle Scholar
  123. N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, D., Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J. 683, 1217 (2008)ADSCrossRefGoogle Scholar
  124. N. Nettelmann, A. Becker, B. Holst, R. Redmer, Jupiter models with improved ab initio hydrogen equation of state (H-REOS.2). Astrophys. J. 750, 52 (2012)ADSCrossRefGoogle Scholar
  125. N. Nettelmann, R. Püstow, R. Redmer, Saturn layered structure and homogeneous evolution models with different EOS. Icarus 225, 548–557 (2013)ADSCrossRefGoogle Scholar
  126. G.E. Norman, A.N. Starostin, High Temp. 6, 394 (1968). High Temp. 8, 381 (1970)Google Scholar
  127. J. Ortner, F. Schautz, W. Ebeling, Quasiclassical molecular-dynamics simulations of the electron gas. Phys. Rev. E 56, 4665–4670 (1997)ADSCrossRefGoogle Scholar
  128. J. Ortner, I. Valuev, W. Ebeling, Semiclassical dynamics and time correlations in two-component plasmas. Control. Plasma Phys. 39, 311–321 (1999)ADSCrossRefGoogle Scholar
  129. F. Perrot, M.W.C. Dharmawardana, Exchange and correlation potentials at finite temperatures. Phys. Rev. A 30, 2619 (1984)ADSCrossRefGoogle Scholar
  130. F. Perrot, M.W.C. Dharmawardana, Spin-polarized electron liquid at arbitrary temperatures. Phys. Rev. B 62, 16536 (2000)ADSCrossRefGoogle Scholar
  131. D. Pines, The many-body problem. A lecture note, (Benjamin, New York, 1961) (Russ. transl. Moskva 1963)Google Scholar
  132. D. Pines, P. Nozieres, The theory of quantum liquids, (Benjamin, New York, Amsterdam 1966) (Russ. Transl. Mir, Moskva, 1967)Google Scholar
  133. M. Planck, Zur Quantenstatistik des Bohrschen Atommodells. Ann. Physik (Leipzig) 75, 673–684 (1924)ADSCrossRefGoogle Scholar
  134. A.Y. Potekhin, G. Chabrier, Electron screening effect on stellar thermonuclear fusion, Contr. Plasma Physics 53, 397–405 (2013); Equation of state for magnetized Coulomb plasmas, Astronomy and Astrophysics 550, A43 (2013)Google Scholar
  135. J.C. Rasaiah, H. Friedman, Integral equation methods in the computation of equilibrium properties of ionic solutions. J. Chem. Phys. 48, 2742 (1968)ADSCrossRefGoogle Scholar
  136. R. Redmer, Physical properties of dense, low-temperature plasmas. Phys. Rep. 282, 35 (1997)ADSCrossRefGoogle Scholar
  137. R. Redmer, G. Röpke, Progress in the theory of dense strongly coupled plasmas. Control. Plasma Phys. 50, 970–985 (2010)ADSCrossRefGoogle Scholar
  138. W. Richert, W. Ebeling, Thermodynamic functions of the electron fluid for a wide density-temperature range. Phys. Stat. Sol. (b) 121, 623–639 (1984)ADSCrossRefGoogle Scholar
  139. J. Riemann, M. Schlanges, H.E. DeWitt, W.D. Kraeft, EOS of weakly degenerate OCP. Physica A 219, 423 (1995)ADSCrossRefGoogle Scholar
  140. F.J. Rogers et al., Astrophys. J. 310, 723 (1986); ibid. 456, 902 (1996)Google Scholar
  141. F.J. Rogers, D.A. Young, Phys. Rev. E 56, 5876 (1997)ADSCrossRefGoogle Scholar
  142. G. Röpke, W. Ebeling, W.D. Kraeft, Quantum-statistical conductance theory of nonideal plasmas. Physica A 101, 243–254 (1980)Google Scholar
  143. G. Röpke, K. Kilimann, D. Kremp, W.D. Kraeft, Phys. Lett. A 68, 329 (1978)Google Scholar
  144. G. Röpke, K. Kilimann, D. Kremp, W.D. Kraeft, R. Zimmermann, Phys. Stat. Sol. (b) 88, K59 (1978)ADSCrossRefGoogle Scholar
  145. G. Röpke, T. Seifert, H. Stolz, R. Zimmermann, Phys. Stat. Sol. (b) 100, 215 (1980)ADSCrossRefGoogle Scholar
  146. Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989); 72, 3831 (1994)Google Scholar
  147. Y. Rosenfeld, P. Tarazona, Molec. Phys. 95, 141 (1998)ADSCrossRefGoogle Scholar
  148. M. Ross, Phys. Rev. B 54, 9589 (1996); 58, 669 (1998)Google Scholar
  149. S. Sadykova, W. Ebeling, Control. Plasma Phys. 47(659), 1160 (2007)Google Scholar
  150. S. Sadykova, W. Ebeling, I. Valuev, I. Sokolov, Contrib. Plasma Phys. 49, 76 (2009)ADSCrossRefGoogle Scholar
  151. S.P. Sadykova, W. Ebeling, I.M. Tkachenko, Eur. Phys. J. D 61, 117–130 (2011)ADSCrossRefGoogle Scholar
  152. M.N. Saha, Phil. Mag. 40, 472 (1920). Z. Phys. 6, 40 (1921)ADSCrossRefGoogle Scholar
  153. R. Sändig, Thermodynamic functions of dense plasmas using Allnatt integral equation, Phys. Lett. 51 A, 181–183 (1975)Google Scholar
  154. D. Saumon, G. Chabrier, Phys. Rev. Lett. 62, 2397 (1989); Phys. Rev. A 44, 5122 (1991); 46, 2084 (1992)Google Scholar
  155. M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015)ADSCrossRefGoogle Scholar
  156. G. Schmitz, D. Kremp, Z. Naturforschung 23a, 1392 (1967)Google Scholar
  157. K.S. Singwi, M.P. Tosi, R. Land, A. Sjölander, Phys. Rev. 176, 589 (1968)ADSCrossRefGoogle Scholar
  158. V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)ADSCrossRefGoogle Scholar
  159. M. Steinberg, J. Ortner , W. Ebeling, The equation of state of magnetized plasma, J. de Physique 4, 377 ff (2000a)Google Scholar
  160. M. Steinberg, J. Ortner, W. Ebeling, Ionization equilibrium and equation of state of low temperature hydrogen plasma in weak magnetic fields. Eur. J. Phys. D 12, 513–520 (2000b)Google Scholar
  161. W. Stolzmann, T. Blöcker, EOS of multi-component plasmas. Phys. Lett. A 221, 99 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  162. W. Stolzmann, W. Ebeling, New Padé approximations for the free charges in two-component strongly coupled plasmas based on the Unsöld-Berlin-Montroll asymptotics. Phys. Lett. A 248, 242–246 (1998)ADSCrossRefGoogle Scholar
  163. S. Tanaka, S. Ichimaru, Parametrized equation of state for dense hydrogenic plasmas. Phys. Rev. A 32, 3756–3757 (1985)ADSCrossRefGoogle Scholar
  164. S. Tanaka, S. Ichimaru, Thermodynamics and correlational properties of finite-temperature electron liquids in the STLS approximation. J. Phys. Soc. Jpn. 55, 2278–2298 (1986)ADSCrossRefGoogle Scholar
  165. A. Unsöld, Z. Astrophys. 24, 355 (1948)ADSMathSciNetGoogle Scholar
  166. A. Unsöld, Physik der Sternatmosphären unter besonderer Berücksichtigung der Sonne, Springer, Heidelberg 1938, 2 (Aufl, Heidelberg, 1955)zbMATHGoogle Scholar
  167. S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)ADSCrossRefGoogle Scholar
  168. R. Hou, Yong, Bredow, Y. Yianmin, R. Redmer, Average-atom model combined with the hypernetted chain approximation applied to warm dense matter. Phys. Rev. E 91, 033114 (2015)ADSCrossRefGoogle Scholar
  169. E.P. Wigner, Interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)ADSzbMATHCrossRefGoogle Scholar
  170. L.D. YaB Zeldovich, Landau. Zh Eksp. Teor. Fiz. 14, 32 (1944)Google Scholar
  171. M.R. Zaghloul, Tables of equation-of-state, thermodynamic properties, and shock Hugoniot for hot dense fluid deuterium, Phys. Plasmas 17, 062701 (2010); 22, 112709 (2015)Google Scholar
  172. M.R. Zaghloul, Dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities. Phys. Plasmas 22, 062701 (2015)ADSCrossRefGoogle Scholar
  173. W. Zimdahl, W. Ebeling, Theory of the ionization equilibrium in nonideal alkali plasmas. Ann. Physik (Leipzig) 34, 9–22 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Werner Ebeling
    • 1
    Email author
  • Vladimir E. Fortov
    • 2
  • Vladimir Filinov
    • 3
  1. 1.Institut für PhysikHumboldt Universität BerlinBerlinGermany
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations