Coulomb Correlations and EOS of Nondegenerate Nonideal Plasmas

  • Werner EbelingEmail author
  • Vladimir E. Fortov
  • Vladimir Filinov
Part of the Springer Series in Plasma Science and Technology book series (SSPST)


As pointed out in Chaps.  1 and  3, the correlations in classical Coulomb systems such as electrolytes and quasi-classical plasmas were first studied by Milner, Debye, Hückel, Wigner, and others. Strictly speaking, there is no classical statistical theory of point charges, due to several divergencies which show when Debye’s limiting laws are not applicable. The quantum-statistical theory of correlations in Coulomb systems is due to the work of Macke, Gell-Man, Brueckner, Bohm, Pines, Nozieres, Montroll, Ward, Klimontovich, Silin, Vedenov, Larkin, DeWitt, Kelbg, and others (Vedenov 1959; Vedenov and Larkin 1959; DeWitt 1962; Kelbg 1963, 1964; Ebeling et al. 1968; Ebeling et al. 1976, Klimontovich 1984, 1986). The most important results were obtained in different research centers, one of them founded in the 1960s by Kelbg in Rostock (Kelbg 1963, 1964; Ebeling et al. 1968; Ebeling et al. 1976; Kraeft et al. 1986). Field-theoretical approaches were developed to solve the problem of quantum screening by Montroll and Ward (1958) and by Vedenov and Larkin (1959). The Montroll–Ward method was further developed by DeWitt et al. (for the main results see DeWitt 1962; DeWitt et al. 1995; Riemann et al. 1995). An approach based on Feynman–Kac methods was developed by Alastuey and Perez et al. (see, e.g., Alastuey et al. 1992, 1996, 2008, 2015). For exact results see Lieb and Seiringer (2010), here we mainly follow the approach of the Kelbg school, but compare in detail with the results of other approaches.


  1. A. Alastuey, Breakdown of Debye screening in quantum Coulomb systems and van der Waals forces. Phys. A 263, 271–283 (1999)CrossRefGoogle Scholar
  2. A. Alastuey, PhA Martin, Breakdown of Debye screening in quantum plasmas. Europhys. Lett. 6, 385 (1988). Phys. Rev. A 40, 6485 (1989)ADSMathSciNetCrossRefGoogle Scholar
  3. A. Alastuey, A. Perez, Virial expansion of the equation of state of a quantum plasma. Europhys. Lett. 20, 19–24 (1992)ADSCrossRefGoogle Scholar
  4. A. Alastuey, A. Perez, Virial expansions for quantum plasmas: Fermi-Bose statistics. Phys. Rev. E 53, 5714 (1996)ADSCrossRefGoogle Scholar
  5. A. Alastuey, V. Ballenegger, Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions. Contr. Plasma Phys. 50, 46–53 (2010)ADSCrossRefGoogle Scholar
  6. A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the equation of state of plasmas. Phys. Rev. E 92, 047101 (2015)ADSCrossRefGoogle Scholar
  7. A. Alastuey, V. Ballenegger, F. Cornu, PhA Martin, Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory. J. Stat. Phys. 130, 1119–1176 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. V. Ballenegger, A. PhA Martin, Alastuey. J. Stat. Phys. 108, 169 (2002)CrossRefGoogle Scholar
  9. A.A. Barker, Radial distribution functions for a hydrogenous plasma in equilibrium. Phys. Rev. 171, 168 (1968); 179, 129–134 (1969)Google Scholar
  10. N.V. Brilliantov, Contrib. Plasma Phys. 38, 489 (1998) (ArXiv physics 1998)Google Scholar
  11. L.S. Brown, L.G. Yaffé, Effective field theory of highly ionized plasmas, Phys. Reports 340, 1 (2001), arXiv:physics/9911055
  12. E.G.D. Cohen, T.J. Murphy, Phys. Fluids 12, 1404 (1969)ADSCrossRefGoogle Scholar
  13. F. Cornu, Exact algebraic tails of static correlations in quantum plasmas. Phys. Rev. Lett. 78, 1464 (1997)ADSCrossRefGoogle Scholar
  14. F. Cornu, PhA Martin, Electron gas beyond random-phase approximations: algebraic screening. Phys. Rev. A 40, 4893 (1991)ADSCrossRefGoogle Scholar
  15. H.-J. Czerwon, Diploma thesis, University Rostock 1972, see also H. Krienke et al., Wiss. Z. University Rostock MNR 24, 5 (1975)Google Scholar
  16. H.E. DeWitt, Evaluation of the quantum-mechanical ring sum. J. Math. Phys. 3(6), 1216 (1962); 7, 616 (1966)Google Scholar
  17. H.E. DeWitt, Asymptotic form of the classical one-component plasma. Phys. Rev. A 14, 1290–1293 (1976)ADSCrossRefGoogle Scholar
  18. W. Ebeling, Equilibrium statistics of systems with bound states, in Proceedings of the Van der Waals Centennial Conference on statistical mechanics, ed. by C. Prins (North Holland Publication, Amsterdam, 1973), pp. 83–84Google Scholar
  19. W. Ebeling, Quantum statistics of bound states in plasmas. Ann. Phys. (Leipzig) 19, 104 (1967), 21, 315 (1968); 22, 383–391, 392–401 (1969)Google Scholar
  20. W. Ebeling, Physica, EOS and Saha equation of plasmas, 38, 378 (1968); 40, 290 (1968); 43, 293 (1969); 73, 573 (1974)Google Scholar
  21. W. Ebeling, Physica A 130, 523 (1985)CrossRefGoogle Scholar
  22. W. Ebeling, Correlation functions and thermodynamic potentials for nonideal plasmas. Contr. Plasma Phys. 33(5/6), 492–502 (1993)ADSCrossRefGoogle Scholar
  23. W. Ebeling, S. Hilbert, On Saha’s equation for partially ionized plasma and Onsager’s bookkeeping rule. Eur. J. Phys. D 20, 93–101 (2002)ADSCrossRefGoogle Scholar
  24. W. Ebeling, F. Schautz, Simulations of the quantum electron gas using momentum-dependent potentials. Phys. Rev. E 56, 3498 (1997)ADSCrossRefGoogle Scholar
  25. W. Ebeling, H.D. Hoffmann, G. Kelbg, Quantenstatistik des Hochtemperaturplasma im thermodynamischen Gleichgewicht. Contr. Plasma Phys. 7, 233–248 (1967)Google Scholar
  26. W. Ebeling, W.D. Kraeft, D. Kremp, Quantum statistical second virial coefficient for real gases and plasmas. Contr. Plasma Phys. 10, 237–263 (1970)Google Scholar
  27. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976) (Extended Russ. translation Mir, Moscow, 1979)Google Scholar
  28. W. Ebeling, S. Hilbert, H. Krienke, On Bjerrum’s mass action law for electrolytes and Onsager’s bookkeeping rule. J. Mol. Liq. 96(97), 409–423 (2002)CrossRefGoogle Scholar
  29. W. Ebeling, H. Hache, M. Spahn, Thermodynamics of ionization and dissociation in hydrogen. Eur. Phys. D 23, 265–272 (2003)ADSCrossRefGoogle Scholar
  30. W. Ebeling, G.E. Norman, A.A. Valuev, I. Valuev, Contrib. Plasma Phys. 39, 61 (1999)ADSCrossRefGoogle Scholar
  31. W. Ebeling, A. Filinov, M. Bonitz, V. Filinov, T. Pohl, The method of effective potentials in the quantum-statistical theory of plasmas. J. Phys. A Math. Gen. 39, 4309–4317 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. W. Ebeling, The work of Baimbetov on nonideal plasmas and some recent developments. Contr. Plasma Phys. 56(3–4), 163–175 (2016)ADSCrossRefGoogle Scholar
  33. H. Falkenhagen, Theorie der Electrolyte, Teubner Leipzig (1971)Google Scholar
  34. H. Falkenhagen et al., I. Equilibrium properties of ionized dilute electrolytes, II. Mass transport properties, in: Ionic interactions, ed. by S. Petrucci, (Academic Press, New York, 1971)Google Scholar
  35. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (Graw-Hill, New York, 1965)zbMATHGoogle Scholar
  36. V.S. Filinov, V.E. Fortov, M. Bonitz, D. Kremp, Phys. Lett. A 274, 228 (2000)ADSCrossRefGoogle Scholar
  37. V.S. Filinov, M. Bonitz, W. Ebeling, V.E. Fortov, Plasma Phys. Control Fusion 43, 743 (2001)ADSCrossRefGoogle Scholar
  38. A.V. Filinov, M. Bonitz, W, Ebeling, Improved Kelbg potential for correlated Coulomb systems. J. Phys. A Math. Gen. 36 5957–5962 PII: S0305-4470(03) 55108-3 (2003)Google Scholar
  39. A.V. Filinov et al., Phys. Rev. E 70, 046411 (2004)ADSCrossRefGoogle Scholar
  40. V.S. Filinov, M. Bonitz, V.E. Fortov, W. Ebeling, H. Fehske, D. Kremp, W.D. Kraeft, V. Bezkrovniy, P. Levashov, Monte Carlo simulations of dense quantum plasmas. J. Phys. A Math. Gen. 38, 1–9 (2005)CrossRefGoogle Scholar
  41. V.E. Fortov, Extreme States of Matter (FizMatGis, Moskva, 2009). (in Russian)Google Scholar
  42. V.E. Fortov, Extreme States of Matter: on Earth and in the Cosmos (Springer, Berlin, 2011)CrossRefzbMATHGoogle Scholar
  43. A. Förster, T. Kahlbaum, W. Ebeling, Equation of state and phase diagram of fluid helium in the region of partial ionization. Laser Part. Beams 10, 253–262 (1992)ADSCrossRefGoogle Scholar
  44. H.L. Friedman, Ionic Solution Theory (Interscience, New York, London, 1962)Google Scholar
  45. P.E. Grabowski, A. Markmann, M.S. Murillo, C.A. Fichtl, D.F. Richards, V.S. Batista, F.R. Graziani, I.V. Morozov, I.A. Valuev, Wave packet spreading and localization in electron-nuclear scattering. Phys. Rev. E 87, 063104 (2013)ADSCrossRefGoogle Scholar
  46. R.I. Guernsey, Phys. Fluids 5, 322 (1962)ADSMathSciNetCrossRefGoogle Scholar
  47. J.P. Hansen, I.R. McDonald, Phys. Rev. A 23, 2041 (1981)ADSCrossRefGoogle Scholar
  48. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 3rd edn. (Academic Press, New York, 2006)zbMATHGoogle Scholar
  49. J.-P. Hansen, I.R. McDonald, E.L. Pollock, Phys. Rev. A 11, 1025 (1975)ADSCrossRefGoogle Scholar
  50. E.J. Heller, J. Chem. Phys. 62, 1544 (1975)ADSCrossRefGoogle Scholar
  51. P.C. Hemmer, H. Holden, S. Kjelstrup Ratkje, The Collected Works of Lars Onsager (with commentary) (World Scientific, Singapore, 1996)Google Scholar
  52. H.J. Hoffmann, G. Kelbg, Ann. Physik (Leipzig) 17, 356 (1966); 18, 186 (1967); 19, 186 (1967)Google Scholar
  53. H.J. Hoffmann, W. Ebeling, On the EOS of Fully Ionized Quantum Plasmas. Physica 39, 593 (1968); Contr. Plasma Phys. 8, 43 (1968)Google Scholar
  54. S. Ichimaru, Statistical Plasma physics (Addison-Wesley, Redwood City, 1992)Google Scholar
  55. B. Jakob, P.-G. Reinhard, C. Toepffer, G. Zwicknagel. Phys. Rev. E 76, 036406 (2007); L.P. Kadanoff, L.P. Baym, Quantum Statistical Mechanics. (New York, 1962)Google Scholar
  56. T. Kahlbaum, The second virial coefficient for charged particle systems, in Dynamik, Evolution, Strukturen, ed. by J. Freund (Verlag Dr. Köster, Berlin, 1996)Google Scholar
  57. T. Kahlbaum, Calculation of the virial expansion for quantum plasmas, in Strongly Coupled Coulomb Systems, eds. by G.J. Kalman, J.M. Rommel, K. Blagoev (Plenum, New York and London, 1998)Google Scholar
  58. T. Kahlbaum, Advances in the calculation of virial expansions for quantum plasmas up to third order in the density, in Strongly Coupled Coulomb Systems, eds. by G.J. Kalman et al., (Plenum Press, New York, 1998); The quantum-diffraction term in the free energy for Coulomb plasma, effective-potential approach. J. Phys. France 10, Pr5-455–459 (2000)Google Scholar
  59. A.S. Kaklyugin, Teplophys. Vyss. Temp. 23, 217 (1985)Google Scholar
  60. G. Kalman, J. Rommel, K. Blagoev (eds.), Strongly Coupled Coulomb Systems (Plenum Press, New York, 1998)Google Scholar
  61. G. Kelbg, Quantenstatistik der Gase mit Coulombwechselwirkung. Ann. Physik (Leipzig) 12, 219–224, 354–360 (1963); 14, 394–403 (1964)Google Scholar
  62. G. Kelbg, Einige Methoden der statistischen Thermodynamik hochionisierter Plasmen, Ergebnisse der Plasmaphysik aund Gaselektronik, vol. III (Akademie Verlag, Berlin, 1972)Google Scholar
  63. D. Klakow, C. Toepffer, P.-G. Reinhard, Phys. Lett. A 192, 55 (1994). J. Chem. Phys. 101, 10766 (1994)ADSCrossRefGoogle Scholar
  64. M. Knaup, P.-G. Reinhard, C. Toepffer, G. Zwicknagel, Wave packet molecular dynamics simulations of hydrogen at mbar pressures. Computer Phys. Comm. 147, 202–204 (2002)ADSCrossRefzbMATHGoogle Scholar
  65. M. Knaup, P.-G. Reinhard, C. Toepffer, G. Zwicknagel, J. Phys. A Math. Gen. 36, 6165 (2003)ADSCrossRefGoogle Scholar
  66. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (World Scientific, Singapore, 2009)CrossRefzbMATHGoogle Scholar
  67. YuL Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasmas, Izdat MGU 1964. Engl. transl. (Pergamon, Oxford, 1967)Google Scholar
  68. Y.L. Klimontovich, Statistical physics (in Russ) (Nauka, 1982); Engl. transl (Harwood, New York, 1986)Google Scholar
  69. W. YuL Klimontovich, Zh Ebeling, Eksp., Teor. Fiz. 42, 146 (1972)Google Scholar
  70. W.D. YuL Klimontovich, Kraeft. Teplofiz. Vyss. Temp. 12, 239 (1974)ADSGoogle Scholar
  71. V.P. Kopyshev, Second virial coefficients of a plasma. Sov. Phys. JETP 28, 684–686 (1969)ADSGoogle Scholar
  72. W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag & Pergamon Press, Berlin & New York, 1986)Google Scholar
  73. W.D. Kraeft, D. Kremp, G. Röpke, Direct linear term in the equation of state of plasmas. Phys. Rev. E 91, 013108 (2015)ADSCrossRefGoogle Scholar
  74. D. Kremp, W.D. Kraeft, W. Ebeling, Quantum statistics of the second virial coefficients and scattering theory. Physica 51, 164 (1971)CrossRefGoogle Scholar
  75. D. Kremp, G. Schmitz, Z. Naturforschung 22a, 1366, 1392 (1967)Google Scholar
  76. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)zbMATHGoogle Scholar
  77. A.I. Larkin, Zh. eksp. teor. Fiz. (Russ.) 38, 1896 (1960)Google Scholar
  78. J.D. Landau, E.M. Lifshits, Statistical Physics (part I), Nauka Moska 1976, German transl Berlin 1979Google Scholar
  79. E.H. Lieb, R. Seiringer, The Stability of Matter in Quantum Mechanics (Cambridge University Press, New York, 2010)zbMATHGoogle Scholar
  80. P.A. Martin, Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075 (1988)ADSMathSciNetCrossRefGoogle Scholar
  81. J.E. Mayer, The theory of ionic solutions. Chem. Phys. 18, 1426–1436 (1950)ADSGoogle Scholar
  82. B. Militzer, D.M. Ceperley, Phys. Rev. Lett. 85, 1890 (2000)ADSCrossRefGoogle Scholar
  83. E. Montroll, J. Ward, Quantum statistics of interacting particles. Phys. Fluids 1, 55 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. I.V. Morozov, I.A. Valuev, J. Phys. A Math. Theor. 42, 214044 (2009); Contr. Plasma Phys. 52, 140 (2012)Google Scholar
  85. J. Ortner, Equation of states for classical; coulomb systems: use of the Hubbard-Schofield approach. Phys. Rev. E 59, 6312–6320 (1999)ADSCrossRefGoogle Scholar
  86. J. Ortner, I. Valuev, W. Ebeling, Electric microfield distribution in two-component plasmas. Theory Simulations Contrib. Plasma Phys. 39, 311 (1999)ADSCrossRefGoogle Scholar
  87. D. Pines, P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, Amsterdam, 1966) (Russ. Transl. Mir, Moskva, 1967)Google Scholar
  88. M. Planck, Zur Quantenstatistik des Bohrschen Atommodells. Ann. Phys. 75, 673–684 (1924)CrossRefGoogle Scholar
  89. E.L. Pollock, J.P. Hansen, Phys. Rev. A 8, 3110 (1973)ADSCrossRefGoogle Scholar
  90. R. Redmer, Phys. Rep. 282, 35 (1997)ADSCrossRefGoogle Scholar
  91. R. Redmer, G. Röpke, S. Kuhlbrodt, H. Reinholz, Phys. Rev. B 63, 233104 (2001)ADSCrossRefGoogle Scholar
  92. H. Reinholz, Ann. Phys. (Paris) 30, 1 (2005)Google Scholar
  93. J. Riemann, M. Schlanges, H.E. DeWitt, W.D. Kraeft, Equation of state of the weakly degenerate OCP. Phys. A 219, 423–435 (1995)CrossRefGoogle Scholar
  94. G. Rohde, G. Kelbg, W. Ebeling, Binary slater sums and distribution functions. Ann. Physik (Leipzig) 22, 1 (1968)Google Scholar
  95. S.P. Sadykova at al., Contr. Plasma Phys. 47, 659, 1160 (2007); 49, 76 (2009)Google Scholar
  96. S.P. Sadykova, W. Ebeling, I.M. Tkachenko, Static and dynamic structure factors with account of the ion structure for high-temperature alkali and alkaline earth plasmas. Eur. Phys. J. D 61, 117–130 (2011)ADSCrossRefGoogle Scholar
  97. G. Schmitz, D. Kremp, Quantenmechanische Verteilungsfunktion für ein Elektronengas. Z. Naturforschung A 23, 1392–1395 (1967)ADSGoogle Scholar
  98. A.N. Starostin, V.C. Roerich, R.M. More, How correct is the EOS of weakly nonideal plasmas. Contr. Plasma Phys. 43, 369–372 (2003)ADSCrossRefGoogle Scholar
  99. A.N. Starostin, V.C. Roerich, Bound states in nonideal plasmas: Formulation of the partition function and application to the solar interior. Plasma Sources Sci. Technol. 15, 410–415 (2006)ADSCrossRefGoogle Scholar
  100. W. Stolzmann, W. Ebeling, New Padé approximations for the free charges in two-component strongly coupled plasmas based on the Unsöld-Berlin-Montroll asymptotics. Phys. Lett. A 248, 242–246 (1998)ADSCrossRefGoogle Scholar
  101. R.G. Storer, Path-integral calculation of the quantum-statistical density matrix for attractive Coulomb forces. J. Math. Phys. 9, 964–970 (1968); Radial distribution function for a quantum plasma. Phys. Rev. 176, 326–331 (1968)Google Scholar
  102. S.A. Trigger, V.E. Filinov, V.E. Fortov, M. Bonitz, W. Ebeling, Internal energy of of high density hydrogen. Zh. eksp. tor. Fiz (USSR) 123, 527–542 (2004)Google Scholar
  103. B.A. Trubnikov, V.F. Elesin, Quantum correlation functions in a Maxwellian plasma. JETP 20, 866–872 (1965)MathSciNetzbMATHGoogle Scholar
  104. A.A. Vedenov, A.I. Larkin, Equation of state of plasmas , Sov.Phys. JETP 9, 806–821 (1959)Google Scholar
  105. I.R. Yukhnovsky, M.G. Holovko, Statistical Theory of Classical Equilibrium Systems (in Russ.) (Nauk. Dumka, Kiev, 1980)Google Scholar
  106. V.M. Zamalin, G.E. Norman, V.S. Filinov, Method Monte Carlo in Statistical Physics (Nauka, Moscow, 1977)Google Scholar
  107. B.V. Zelener, G.E. Norman, V.S. Filinov, Perturbation Theory and Pseudopotential Method in Statistical Physics (Nauka, Moscow, 1981)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Werner Ebeling
    • 1
    Email author
  • Vladimir E. Fortov
    • 2
  • Vladimir Filinov
    • 3
  1. 1.Institut für PhysikHumboldt Universität BerlinBerlinGermany
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations