Coulomb Systems. Screening and Ionization Problems

  • Werner EbelingEmail author
  • Vladimir E. Fortov
  • Vladimir Filinov
Part of the Springer Series in Plasma Science and Technology book series (SSPST)


The elementary quantum theory of screening effects is described using essentially classical semi-phenomenological methods, and tools developed by Debye-Hückel, Bogoliubov, Mayer, and other pioneers. Following Morita and Kelbg, quantum effects are modeled by nonsingular effective potentials.


  1. A. Alastuey, A. Perez, Virial expansion of the equation of state of a quantum plasma. Europhys. Lett. 20, 19–24 (1992)ADSCrossRefGoogle Scholar
  2. A. Alastuey, A. Perez, Virial expansions for quantum plasmas: Fermi-Bose statistics. Phys. Rev. E 53, 5714–5728 (1996)ADSCrossRefGoogle Scholar
  3. A. Alastuey, V. Ballenegger, F. Cornu et al., Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory. J. Stat. Phys. 130, 1119–1176 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. A. Alastuey, V. Ballenegger, Pressure of a partially ionized hydrogen gas: numerical results from exact low temperature expansions. Contr. Plasma Phys. 50, 46–53 (2010)ADSCrossRefGoogle Scholar
  5. A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the equation of state of plasmas. Phys. Rev. E. 92, 047101 ff (2015), see also W.D. Kraeft, D. Kremp, G. Röpke, Phys. Rev. E. 92, 047101 ff (2015)Google Scholar
  6. F.B. YuV Arkhipov, A.E. Davletov, Baimbetov, Thermodynamics of dense high-temperature plasmas: semiclassical approach. Eur. Phys. J. D 8, 299–304 (2000)ADSCrossRefGoogle Scholar
  7. F.B. YuV Arkhipov, A.E. Davletov, Baimbetov, Self-consistent chemical model of partially ionized plasmas. Phys. Rev. E 83, 016405 (2011)ADSCrossRefGoogle Scholar
  8. A.B. YuV Arkhipov, A. Ashikbayeva, A.E. Askaruly, S. Davletov, V.V. Syzganbaeva, M. Tkachenko, Voronkov. Contrib. Plasma Phys. 55, 381 (2015)ADSCrossRefGoogle Scholar
  9. R. Balescu, Statistical Mechanics of Charged Particles (Wiley, London, 1963)zbMATHGoogle Scholar
  10. F.B. Baimbetov, M.A. Bekenov, T.S. Ramazanov, Effective potential of a semiclassical hydrogen plasma. Phys. Lett. A 197, 157–158 (1995)ADSCrossRefGoogle Scholar
  11. T.H. Berlin, E.W. Montroll, On the free energy of a mixture of ions: an extension of Kramers theory. J. Chem. Phys. 20, 75 (1952)ADSCrossRefGoogle Scholar
  12. D. Beule, W. Ebeling, A. Förster, H. Juranek, S. Nagel, R. Redmer, G. Röpke, Phys. Rev. B 59, 14177 (1999)ADSCrossRefGoogle Scholar
  13. J.S. Blakemore, Semicionductor Statistics (Pergamon Press, New York, 1962), Solid State Physics (Cambridge University Press, 1985)Google Scholar
  14. L. Blum, Mol. Phys. 30, 1529 (1975)ADSCrossRefGoogle Scholar
  15. V.B. Bobrov, S.A. Trigger, A.G. Zagorodnyi, Special properties of the Fourier transform of Coulomb potential. Short Commun. Phys. FIAN 11, 33 (2015)Google Scholar
  16. V.B. Bobrov, A.G. Zagorodny, S.A. Trigger, Coulomb interaction and Bose-Einstein condensate (Russ.). Low Temp. Phys. 41, 1154–1163 (2015)Google Scholar
  17. N.N. Bogoliubov, Problems of Dynamical Theory in Statistical Physics (in Russ.) (Gostekhisdat, Moskva, 1946), Engl. in J. De Boer, G.E. Uhlenbeck, Studies in Stat. Mechanics, North Holland, Amsterdam 1962Google Scholar
  18. N.N. Bogoliubov, Selected Works: Part I Dynamical Theory, Part II Quantum and Classical Statistical Mechanics (in Russ.) (Naukova Dumka, Kiev, 1969–1970), Engl. transl. Gordon and Breach, New York, 1991Google Scholar
  19. H.P. Bonzel, A.M. Bradshaw, G. Ertl (eds.), Physics and Chemistry of Alkali Metal Adsorption (Elsevier, Amsterdam, 1989)Google Scholar
  20. D. Bohm, D. Pines, A collective description of electron interactions. Phys. Rev. 92, 609 (1953)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. R. Bredow, W.-D. Th Bornath, R. Redmer, Kraeft. Contrib. Plasma Phys. 53, 276 (2013)ADSCrossRefGoogle Scholar
  22. L. Brillouin, Les statistiques quantiques et leurs applications (Paris, 1930)Google Scholar
  23. N.V. Brilliantov, Accurate first-principle equation of state for the OCP. Contrib. Plasma Phys. 38, 489 (1998)ADSCrossRefGoogle Scholar
  24. L.S. Brown, L.G. Yaffé, Effective field theory of highly ionized plasmas. Phys. Rep. 340, 1 (2001)ADSzbMATHCrossRefGoogle Scholar
  25. A.V. Bushman, I.V. Lomonossov, V.E. Fortov, Equation of State of Metals at High Energy Densities (Chernogolovka, 1992)Google Scholar
  26. R. Cauble et al., Contrib. Plasma Phys. 41, 279 (2001)ADSCrossRefGoogle Scholar
  27. D.M. Ceperley, Rev. Mod. Phys. 65, 279 (1995)ADSCrossRefGoogle Scholar
  28. G. Chabrier, A. Potekhin, Phys. Rev. E 58, 4941 (1998)ADSCrossRefGoogle Scholar
  29. E.G.D. Cohen, T.J. Murphy, Phys. Fluids 12, 1404 (1969)ADSCrossRefGoogle Scholar
  30. W. Däppen, Accurate and versatile equations of state for the Sun and Sun-like stars. Astrophys. Space Sci. 328, 139–146 (2010)ADSzbMATHCrossRefGoogle Scholar
  31. C. Deutsch, Nodal expansion in a real matter plasma. Phys. Lett. A 60, 317–318 (1977)ADSCrossRefGoogle Scholar
  32. N. Desbiens, P. Arnault, J. Clerouin, Parametrization of OCP, Physics of Plasmas 23, No. 9 (2017),
  33. H.E. DeWitt, Evaluation of the quantum-mechanical ring sum with Boltzmann statistics. J. Math. Phys. 3, 1216–1228 (1962)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. H.E. DeWitt, Statistical mechanics of high-temperature quantum plasmas beyond the ring approximation. J. Math. Phys. 7, 616–626 (1966)ADSMathSciNetCrossRefGoogle Scholar
  35. H.E. DeWitt, Asymptotic form of the classical one-component plasma. Phys. Rev. A 14, 1290–1293 (1976)ADSCrossRefGoogle Scholar
  36. H.E. DeWitt, M. Schlanges, A.Y. Sakakura, W.D. Kraeft, Low density expansion of the equation of state for a quantum electron gas. Phys. Lett. A 197, 326 (1995)ADSCrossRefGoogle Scholar
  37. W. Ebeling, Statistische Thermodynamik der gebundenen Zustände in Plasmen. Ann. Physik (Leipzig) 19, 104–112 (1967)ADSCrossRefGoogle Scholar
  38. W. Ebeling, Derivation of the free energy from exact scttering phase shifts (in German). Ann. Physik (Leipzig) 22, 33–39 (1968), 22, 383–391 (1969), 22 392–401 (1969)Google Scholar
  39. W. Ebeling, Equation of state and Saha equation of partially ionized plasmas. Physica 38 378 (1968), 73, 573–584 (1974)Google Scholar
  40. W. Ebeling, On the possibility of diffusion instabilities in non-aqueous weak electrolytes. Z. Physik. Chem. 247, 340 (1971), Quantum statistics of ionization and shielding effects. Phys. Stat. Sol. (b) 46, 243 (1971)Google Scholar
  41. W. Ebeling, On the Thermodynamic Functions of One-Component Nonideal Plasmas (Humboldt University, Berlin (Preprint Section of Physics, Statistical Physics, 1998)Google Scholar
  42. W. Ebeling, The work of Baimbetov on nonideal plasmas and some recent developments. Contrib. Plasma Phys. 56(3–4), 163–175 (2016)ADSCrossRefGoogle Scholar
  43. W. Ebeling, R. Sändig, Theory of the ionization equilibrium in dense plasmas. Ann. Physik (Leipzig) 28, 289–305 (1973)ADSCrossRefGoogle Scholar
  44. W. Ebeling, M. Grigo, Mean spherical approximation-mass action law theory of ionic solutions. Annalen der Physik 37, 21 (1980). J. Solut. Chem. 11, 151–167 (1982)CrossRefGoogle Scholar
  45. W. Ebeling, W. Richert, Nonideal hydrogen plasma. Ann. Physik (Leipzig) 39, 362 (1982), Phys. Lett. A 108, 80 (1985), Phys. Stat. Sol. (b) 128, 167 (1985)Google Scholar
  46. W. Ebeling, W. Richert, Pressure ionization of atoms in plasmas. Contrib. Plasma Phys. 25, 431–436 (1985)Google Scholar
  47. W. Ebeling, G. Norman, Coulomb phase transitions in dense plasmas. J. Stat. Phys. 110, 861–877 (2003)zbMATHCrossRefGoogle Scholar
  48. W. Ebeling, W.D. Kraeft, D. Kremp, Quantum statistical second virial coefficient for real gases and plasmas. Contrib. Plasma Phys. 10, 237–263 (1970)Google Scholar
  49. W. Ebeling, W.D. Kraeft, D. Kremp, Nonideal plasmas, Proceedings of ICPIG. Invited Papers (Berlin, 1977)Google Scholar
  50. W. Ebeling, C.V. Meister, R. Sändig, Pressure ionization in nonideal alkali plasmas. Ann. Physik 36, 321–400 (1978)Google Scholar
  51. W. Ebeling, M. Steinberg, J. Ortner, Ionization equilibrium and EOS of a low temperature hydrogen plasma in a magnetic field. Eur. Phys. J. D 12, 513–520 (2000)ADSCrossRefGoogle Scholar
  52. W. Ebeling, S. Hilbert, H. Krienke, J. Mol. Liq. 96–97, 409 (2002)CrossRefGoogle Scholar
  53. W. Ebeling, W.D. Kraeft, G. Röpke, Bound states in Coulomb systems, Contr. Plasma Phys. 52, 7–16 (2012)Google Scholar
  54. W. Ebeling, W.D. Kraeft, D. Kremp, K. Kilimann, Phys. Stat. Sol. b 78, 241 (1976)ADSCrossRefGoogle Scholar
  55. W. Ebeling, W.D. Kraeft, D. Kremp, G. Röpke, Energy levels in hydrogen plasmas and the Planck-Larkin partition function. Astrophys. J. 290, 24–27 (1985)ADSCrossRefGoogle Scholar
  56. W. Ebeling, A. Förster, W. Richert, H. Hess, Thermodynamic properties and plasma phase transitions of xenon at high pressure and high temperature. Physica A 150, 159–171 (1988)ADSCrossRefGoogle Scholar
  57. W. Ebeling, G.E. Norman, A.A. Valuev, I.A. Valuev, Contrib. Plasma Phys. 39, 61 (1999)ADSCrossRefGoogle Scholar
  58. W. Ebeling, W. Stolzmann, A. Förster, M. Kasch, Contrib. Plasma Phys. 39, 287–306 (1999)ADSCrossRefGoogle Scholar
  59. W. Ebeling, A. Förster, V. Fortov, V. Gryaznov, A. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991) (Russ. transl. Moskva, Ishevsk, 2007)Google Scholar
  60. W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz, G. Röpke, The influence of Pauli blocking effects on the Mott transition in dense hydrogen. J. Phys. A: Math. Theor. 42, 214033 (2009)ADSzbMATHCrossRefGoogle Scholar
  61. G. Ecker, W. Weizel, Ann. Physik (Leipzig) 17, 126 (1956)ADSCrossRefGoogle Scholar
  62. H. Falkenhagen, Theorie der Elektrolyte (Hirzel, Leipzig, 1971)zbMATHGoogle Scholar
  63. H. Falkenhagen, W. Ebeling, Equilibrium properties of ionized dilute electrolytes, in Ionic Interactions, vol. I, ed. by S. Petrucci (Academic Press, New York, 1971)Google Scholar
  64. V.S. Filinov, M. Bonitz, W. Ebeling, V.E. Fortov, Plasma Phys. Control. Fusion 43, 743 (2001)ADSCrossRefGoogle Scholar
  65. A.V. Filinov, M. Bonitz, W, Ebeling, Improved Kelbg potential for correlated Coulomb systems, J. Phys. A: Math. Gen. 36, 5957–5962 (2003)Google Scholar
  66. V.S. Filinov, M. Bonitz, V.E. Fortov, W. Ebeling, P. Levashov, M. Schlanges, Thermodynamic properties and plasma phase transition in dense hydrogen. Contrib. Plasma Phys. 44, 388–394 (2004)ADSzbMATHCrossRefGoogle Scholar
  67. V.S. Filinov, P.R. Levashov, A.V. Botan, M. Bonitz, V.E. Fortov, Thermodynamic properties and electrical conductivity of strongly correlated plasma media. J. Phys. A: Math. Theor. 42, 214002 (2009)ADSzbMATHCrossRefGoogle Scholar
  68. M.E. Fisher, J. Stat. Phys. 75, 1 (1994)ADSCrossRefGoogle Scholar
  69. M.E. Fisher, Y. Levin, Criticality in ionic fluids: Debye-Hückel. Bjerrum and beyond. Phys. Rev. Lett. 71, 3826–3829 (1993)ADSCrossRefGoogle Scholar
  70. M.E. Fisher, Y. Levin, Phys. Rev. Lett. 71, 2138 (1993)CrossRefGoogle Scholar
  71. A. Förster, T. Kahlbaum, W. Ebeling, Equation of state and phase diagram of fluid helium in the region of partial ionization. Laser Part. Beams 10, 253–262 (1992)ADSCrossRefGoogle Scholar
  72. V.E. Fortov et al., Contrib. Plasma Phys. 41, 215 (2001)ADSCrossRefGoogle Scholar
  73. V. Fortov, M. Mochalov et al., Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
  74. V.E. Fortov, Extreme States of Matter (in Russian) (FizMatGis, Moskva, 2009) (2015)Google Scholar
  75. V.E. Fortov, Extreme States of Matter: On Earth and in the Cosmos, the Frontiers Collection (Springer, 2011)Google Scholar
  76. V.E. Fortov, V.Y. Ternovoi, M.V. Zhernokletov, M.A. Mochalov et al., Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
  77. H. Friedman, Ionic Solution Theory (Wiley Interscience, New York, 1962)Google Scholar
  78. V.K. Gryaznov, I.I. Iosilevsky, Thermophysical properties of hydrogen plasmas to Megabars. Contrib. Plasma Phys. 56, 200 (2016)CrossRefGoogle Scholar
  79. W. Ebeling, W.D. Kraeft, G. Röpke, Bound states in Coulomb systems. Contr. Plasma Phys. 52, 7–16 (2012)ADSzbMATHCrossRefGoogle Scholar
  80. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976) (Extended Russ. transl. Mir, Moscow, 1979)Google Scholar
  81. H. Hellmann, Über die Natur der chemischen Bindung, Acta Physicochem. USSR 1, 333–353 (1934/1935)Google Scholar
  82. H. Hellmann, Ein kombiniertes Näherungsverfgahren zur Energieberechnung im Vielelektronenproblem. Acta Physicochem. USSR 4, 225–244 (1936)zbMATHGoogle Scholar
  83. V.E. Fortov, Equation of state from the ideal gas to the quark-gluon plasma (in Russ.) (Fizmatgis, Moskva, 2013), S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, O.L. Landen. Phys. Rev. Lett. 90, 175002 (2003)CrossRefGoogle Scholar
  84. A.V. Filinov, M. Bonitz, W, Ebeling, Improved Kelbg potential for correlated Coulomb systems. J. Phys. A: Math. Gen. 36, 5957–5962 (2003)ADSzbMATHCrossRefGoogle Scholar
  85. H.C. Graboske, D.J. Harwood, F.J. Rogers, Phys. Rev. 186, 210 (1969)ADSCrossRefGoogle Scholar
  86. H. Griem, Plasma Spectroscopy (Mc Graw Hill, New York, 1968)Google Scholar
  87. M. Grigo, W. Ebeling, An analytical calculation of EOS and critical point in a dense fluid of hard charged spheres. Ann. Physik (Leipzig) 37, 21–30 (1980)Google Scholar
  88. P.C. Hemmer, H. Holden, S. Kjelstrup Ratkje (eds.), The Collected Works of Lars Onsager (World Scientic, Singapore, 1996)Google Scholar
  89. F. Hensel, S. Juengst, F. Noll, R. Winter, Localisation and metal-insulator transitions, ed. by D. Adler, H. Fritsche (Plenum Press, New York, 1985)Google Scholar
  90. F. Hensel, W.W. Warren Jr., Fluid Metals, The Liquid-Vapor Transition (Princeton University Press, Princeton, 2014)Google Scholar
  91. H. Hess, Physics of nonideal plasmas, ed. by W. Ebeling, A. Foerster, R. Radtke (B.G. Teubner, Leipzig, 1992)Google Scholar
  92. B. Holst, R. Redmer, V.K. Gryaznov, V.E. Fortov, I.L. Iosilevskiy, Hydrogen and deuterium in shock wave experiments, ab initio simulations and chemical picture modeling. Eur. Phys. J. D 66, 104 (2012)ADSCrossRefGoogle Scholar
  93. H. Hoffmann, W. Ebeling, Quantum statistics of high-temperature plasmas in equilibrium. Contr. Plasma Phys. 8, 43–56 (1968)Google Scholar
  94. S. Ichimaru, Basic Principles of Plasma Physics (Addison-Wesley, Benjamin, London, 1973)Google Scholar
  95. S. Ichimaru, Statistical Plasma Physics (Addison-Wesley, Redwood City, 1992)Google Scholar
  96. D.R. Inglis, E. Teller, Astrophysics 90, 430 (1939)Google Scholar
  97. Z.A. Insepov, G.E. Norman, Sov. Phys. JETP 35, 1198 (1972)ADSGoogle Scholar
  98. J.K. Jackson, L.S. Klein, Phys. Rev. 177, 352 (1969)ADSCrossRefGoogle Scholar
  99. J.C. Justice, W. Ebeling, Conductance theory of binary electrolytes for Hamiltonian models. J. Sol. Chem. 8, 809–833 (1979)CrossRefGoogle Scholar
  100. A.S. Kaklyugin, Correlation energy of a non-debye plasma. Teplophys. Vyss. Temp. 23, 217 (1985)Google Scholar
  101. G. Kalman (ed.), Strongly Coupled Coulomb Systems (Pergamon Press, 1998)Google Scholar
  102. T. Kahlbaum, Density expansions of the reduced distribution function and the excess free energy. Contrib. Plasma Phys. 39, 181–184 (1999)ADSCrossRefGoogle Scholar
  103. T. Kahlbaum, The quantum-diffraction term in the free energy for Coulomb plasma, effective-potential approach. J. Phys. France 10, Pr5-455 (2000)Google Scholar
  104. G. Kelbg, Quantenstatistik der Gase mit Coulomb-Wechselwirkung. Ann. Physik (Leipzig) 12(219–224), 354–360 (1963)ADSMathSciNetCrossRefGoogle Scholar
  105. G. Kelbg, Klassische statistische Mechanik der Teilchen-Mischungen mit sortenabhängigen weitreichenden Wechselwirkungen. Ann. Physik (Leipzig) 14, 394–403 (1964)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. G. Kelbg, Methoden der statistischen Thermodynamik hochionisierter Plasmen, Plasmaphysik aund Gaselektronik III (Akad. Verlag, Berlin, 1972)Google Scholar
  107. A.L. Khomkin, I.A. Mulenko, High Temp. 41, 275 (2003). arXiv:org/physics/0305118
  108. A. Khomkin, A. Shumikhin, I. Mulenko, Basic chemical models of partially ionized plasma. Czech. J. Phys. 54, Suppl. C 143 1b (2004)Google Scholar
  109. A. Khomkin, A. Shumikhin, Features of chemical models of a nonideal atomic plasma at high temperatures (in Russ.). Phys. Plasmas 34, 251–256 (2008)CrossRefGoogle Scholar
  110. K. Kilimann, D. Kremp, W.D. Kraeft, Phys. Lett A 61, 393 (1977)ADSCrossRefGoogle Scholar
  111. K. Kilimann, W. Ebeling, Energy gap and line shifts for H-like ions in dense plasmas. Z. Naturforschung 45a 613–617 (1990)Google Scholar
  112. O. Klein, Medd. Vedenskab. Nobelinst. 5, 6 (1919)Google Scholar
  113. Y.L. Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasmas (Pergamon, Oxford, 1967)Google Scholar
  114. Yu.L Klimontovich, Statistical Physics (in Russ) 1982 (Harwood, England, 1986)Google Scholar
  115. M.D. Knudson, D.J. Hanson et al., Phys. Rev. Lett. 87, 225501 (2001)ADSCrossRefGoogle Scholar
  116. M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455–1460 (2015)ADSCrossRefGoogle Scholar
  117. W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akad. Verlag and Pergamon Press, Berlin, 1986)CrossRefGoogle Scholar
  118. W.D. Kraeft, M. Schlanges, Physics of Strongly Coupled Plasmas (World Scientific, 1996)Google Scholar
  119. W.D. Kraeft, D. Kremp, G. Röpke, Direct linear term in the equation of state of plasmas. Phys. Rev. E 91, 013108 (2015)ADSCrossRefGoogle Scholar
  120. H.A. Kramers, Investigations on the free energy of a mixture of ions. Proc. Koninkl. Akademie v. Wetenschappen 30, 145–158 (1927)zbMATHGoogle Scholar
  121. D. Kremp, G. Schmitz, Z. Naturforschung 22a, 1366 (1967)Google Scholar
  122. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)zbMATHGoogle Scholar
  123. H. Krienke, W. Ebeling, H.J. Czerwon, Wiss. Z. MNR Univ. Rostock 24, 5 (1975)Google Scholar
  124. S. Kuhlbrodt, R. Redmer, H. Reinholz, G. Röpke, B. Holst, V.B. Mintsev, V.K. Gryaznov, N.S. Shilkin, V.E. Fortov, Electrical conductivity of noble gases at high pressures. Contrib. Plasma Phys. 45, 61–69 (2005)ADSCrossRefGoogle Scholar
  125. A. Lankin, G. Norman, Density and nonideality effects in plasmas. Contrib. Plasma Phys. 49, 723–731 (2009)ADSCrossRefGoogle Scholar
  126. A.I. Larkin, Zh. eksp. teor. Fiz. (in Russ.) 38, 1896 (1960)Google Scholar
  127. B.P. Lee, M.E. Fisher, Phys. Rev. Lett. 76, 2906 (1996). Europhys. Lett. 39, 3 (1997)CrossRefGoogle Scholar
  128. Y. Levin, M.E. Fisher, Criticality in the hard sphere ionic fluid. Physica A 225, 164–220 (1996)ADSCrossRefGoogle Scholar
  129. H. Lehmann, W. Ebeling, Coulomb phase transitions in symmetrical quantum systems. Phys. Rev. E 54, 2451 (1996)ADSCrossRefGoogle Scholar
  130. W. Lorenzen, B. Holst, R. Redmer, First-order liquid-liquid phase transition in dense hydrogen. Phys. Rev. B 82, 195107 (2010)ADSCrossRefGoogle Scholar
  131. W.R. Magro, D.M. Ceperley, C. Pierleoni, B. Bernu, Phys. Rev. Lett. 76, 1240 (1996)ADSCrossRefGoogle Scholar
  132. J.M. McMahon, M.A. Morales, C. Pierleoni, D.M. Ceperley, The properties of hydrogen and helium. Rev. Mod. Phys. 84, 1612 (2012)ADSCrossRefGoogle Scholar
  133. G. Martynov, Russ. J. Phys. Chem. 74/1 149 (1999)Google Scholar
  134. A.L. Mikhailov, A.S. Filimonov, A.A. Pyalling, V.B. Mintsev, V.K. Gryaznov, I.L. Iosilevskii, JETP 97, 259 (2003)ADSCrossRefGoogle Scholar
  135. B. Militzer, E.L. Pollock, Phys. Rev. E 61, 3470 (2000)ADSCrossRefGoogle Scholar
  136. B. Militzer, D.M. Ceperley, Phys. Rev. Lett. 85, 1890 (2000)ADSCrossRefGoogle Scholar
  137. M.A. Morales, C. Pierleoni, E. Schwegler, D.M. Ceperley, Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. PNAS 110, 12799–12803 (2010)ADSCrossRefGoogle Scholar
  138. A.G. Moreira, M.M.T. da Gama, M.E. Fisher, J. Chem. Phys. 110, 10058 (1999)ADSCrossRefGoogle Scholar
  139. N. Mott, The transition to the metallic state. Phil. Mag. 6, 287–309 (1961)Google Scholar
  140. N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974)Google Scholar
  141. W.J. Nellis, S.T. Weir, A.C. Mitchell, Phys. Rev. B 59, 3434 (1999)ADSCrossRefGoogle Scholar
  142. N. Nettelmann, B. Holst, A. Kietzmann, M. French, R. Redmer, D. Blaschke, Ab initio equation of state data for hydrogen, helium, and water and the structure of Jupiter. Astrophys. J. 683, 1217 (2008)ADSCrossRefGoogle Scholar
  143. S. Nordholm, Chem. Phys. Lett. 105, 302 (1984)ADSCrossRefGoogle Scholar
  144. G.E. Norman, A.N. Starostin, Teplopphys. Vys. Temp. (High Temp.) 6, 394 (1968). High Temp. 8, 381 (1970)Google Scholar
  145. L. Onsager, Electrostatic interaction of molecules. J. Phys. Chem. 43, 189–196 (1939)CrossRefGoogle Scholar
  146. J. Ortner, Equation of states for classical; coulomb systems: use of the Hubbard-Schofield approach. Phys. Rev. E 59, 6312–6320 (1999)ADSCrossRefGoogle Scholar
  147. D. Pines, The Many Body Problem (Benjamin, New York, 1961)zbMATHGoogle Scholar
  148. D. Pines, P. Nozieres, The Theory of Quantum Liquids, Benjamin, New York, 1966 (Russ. Transl. Mir, Moskva, 1967)Google Scholar
  149. M. Planck, Zur Quantenstatistik des Bohrschen Atommodells. Ann. Physik (Leipzig) 76, 673–684 (1924)ADSCrossRefGoogle Scholar
  150. L. Onsager, J. Chem. Phys. 43, 189 (1939)CrossRefGoogle Scholar
  151. E.L. Pollock, J.P. Hansen, Phys. Rev. A 8, 3110 (1973)ADSCrossRefGoogle Scholar
  152. T.S. Ramazanov, K.N. Dzhumagulova, Phys. Plasmas 17, 3758 (2002)ADSCrossRefGoogle Scholar
  153. J.C. Rasaiah, H.L. Friedman, J. Phys. Chem. 48, 2742 (1968), 50, 395 (1969)Google Scholar
  154. R. Redmer, Phys. Rep. 282, 35 (1997)ADSCrossRefGoogle Scholar
  155. R. Redmer, G. Röpke, Progress in the theory of dense strongly coupled plasmas. Contrib. Plasma Phys. 50, 970–985 (2010)ADSCrossRefGoogle Scholar
  156. R. Redmer, F. Hensel, B. Holst (eds.), Metal-to-Nonmetal Transitions (Springer, Berlin, 2010)zbMATHGoogle Scholar
  157. W. Richert, S.A. Insepov, W. Ebeling, Thermodynamic functions of nonideal alkali plasmas. Ann. Physik (Leipzig) 41, 139–150 (1984)ADSCrossRefGoogle Scholar
  158. J. Riemann, M. Schlanges, H.E. DeWitt, W.-D. Kraeft, EOS of the weakly degenerate one-component plasma. Physica A 219, 423 (1995)ADSCrossRefGoogle Scholar
  159. F.J. Rogers, H.C. Graboske, D.J. Harwood, Bound eigenstates of the static screened Coulomb potential. Phys. Rev. A 1, 1577–1586 (1970)Google Scholar
  160. R. Rompe, M. Steenbeck, Erg. exakt. Naturwiss. 18, 275 (1939)Google Scholar
  161. G. Röpke, W. Ebeling, W.D. Kraeft, Quantum-statistical conductance theory of nonideal plasmas, Physica 101 A, 243–254 (1980)Google Scholar
  162. G. Röpke, K. Kilimann, D. Kremp, W.D. Kraeft, Phys. Lett. A 68, 329 (1978)ADSCrossRefGoogle Scholar
  163. G. Röpke, K. Kilimann, D. Kremp, W.D. Kraeft, R. Zimmermann, Phys. Stat. Sol. (b) 88, K59 (1978)ADSCrossRefGoogle Scholar
  164. G. Röpke, T. Seifert, H. Stolz, R. Zimmermann, Phys. Stat. Sol. (b) 100, 215 (1980)ADSCrossRefGoogle Scholar
  165. S.P. Sadykova et al., Contrib. Plasma Phys. 47, 659, 1160 (2007), 49 76 (2009). Eur. Phys. J. D 61, 117–130 (2011)ADSCrossRefGoogle Scholar
  166. D. Saumon, G. Chabrier, Pressure ionization of hydrogen, Phys. Rev. Lett. 62, 2397 (1989)Google Scholar
  167. D. Saumon, G. Chabrier, Phys. Rev. A 44, 5122 (1991), 46, 2084 (1992)Google Scholar
  168. G. Schmitz, Phys. Lett. 21, 174 (1966)ADSCrossRefGoogle Scholar
  169. G. Schmitz, D. Kremp, Z. Naturforschung 23a, 1392 (1967)Google Scholar
  170. W. Schröer, On the chemical and the physical approaches to ion association. J. Mol. Liq. 164, 3–10 (2011)CrossRefGoogle Scholar
  171. V.P. Silin, A.A. Rukhadse, Electromagnetic Properties of Plasmas and of Plasma-Like Matter (In Russ) (Atomizdat, Moskva, 1961)Google Scholar
  172. V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103–106 (2006)CrossRefGoogle Scholar
  173. G. Stell, Criticality and phase-transitions in ionic fluids. J. Stat. Phys. 78, 197–238 (1995)ADSCrossRefGoogle Scholar
  174. A.N. Starostin, V.C. Roerich, R.M. More, How correct is the EOS of weakly nonideal plasmas. Contrib. Plasma Phys. 43, 369–372 (2003)ADSCrossRefGoogle Scholar
  175. A.N. Starostin, V. Roerich, Bound states in nonideal plasmas. Plasma Sour. Sci. Technol. 15, 410–415 (2006)ADSCrossRefGoogle Scholar
  176. M. Steinberg, J. Ortner, W. Ebeling, Phys. Rev. E 58, 3806 (1998)ADSCrossRefGoogle Scholar
  177. W. Stolzmann, W. Ebeling, New Pade approximations for free charges in plasmas. Phys. Lett. A 248, 242–246 (1998)ADSCrossRefGoogle Scholar
  178. V. Ya, Ternovoi, A.S. Filimonov, V.E. Fortov, S.V. Kvitov, D.D. Nikolaev, A.A. Pyalling. Physica B 265, 6 (1999)Google Scholar
  179. S.A. Trigger, W. Ebeling, V.S. Filinov, V.E. Fortov, M. Bonitz, JETP, 96, 465–479 (2003). arXiv:physics/0110013
  180. A. Unsöld, Z. Astrophys. 24, 355 (1948)ADSMathSciNetGoogle Scholar
  181. A. Unsöld, Physik der Sternatmosphären unter besonderer Berücksichtigung der Sonne (Springer, Heidelberg, 1938), 2 (Aufl, Heidelberg, 1955)zbMATHGoogle Scholar
  182. A.A. Vedenov, A.I. Larkin, Equation of state of plasmas (in Russ.). Zh. eksp. teor. Fiz. 36, 1133 (1959)zbMATHGoogle Scholar
  183. A.A. Vedenov, A.I. Larkin, Equation of state of plasmas, Sov. Phys. JETP 9, 806–821 (1959)Google Scholar
  184. V.S. Vorobjov, A.L. Khomkin, Method of canonical transformation in the thermodynamics of partially ionized plasmas. Theor. Math. Phys. (Moscow) 8, 109–118 (1971)Google Scholar
  185. P.N. Voronzov-Veliaminov, A.M. Eliashevich et al., Teplophys. Vysokh. Temp. 8, 277 (1970), 14, 199 (1976)Google Scholar
  186. H. Weingärtner, W. Schröer, Criticality of ionic fluids. Adv. Chem. Phys. 116, 1–66 (2001)Google Scholar
  187. H. Weingärtner, M. Kleemeier, S. Wiegand, W. Schröer, Coulomb and non-coulomb contributions to the criticality of ionic fluids. J. Stat. Phys. 78, 169–196 (1995)ADSCrossRefGoogle Scholar
  188. S.T. Weir, A.C. Mitchell, W.J. Nellis, Metallization of fluid molecular hydrogen at 140 GPa. Phys. Rev. Lett. 76, 1860–1863 (1996)ADSCrossRefGoogle Scholar
  189. E.P. Wigner, On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934), Trans. Far. Soc. 34, 678 (1938)Google Scholar
  190. S. Yeh, Y. Zhou, G. Stell, Phase separation of ionic fluids: an extended Ebeling-Grigo approach. J. Phys. Chem. 100, 1415–1419 (1996)CrossRefGoogle Scholar
  191. I.R. Yukhnovsky, M.G. Holovko, Statistical Theory of Classical Equilibrium Systems (in Russ.) (Nauk., Dumka, 1980)Google Scholar
  192. L.D. YaB Zeldovich, Landau. Zh Eksp. Teor. Fiz. 14, 32 (1944)Google Scholar
  193. W. Zimdahl, W. Ebeling, Theory of the ionization equilibrium in nonideal alkali plasmas. Ann. Physik (Leipzi) 34, 9–22 (1977)ADSCrossRefGoogle Scholar
  194. V.M. Zamalin, G.E. Norman, V.S. Filinov, The Monte Carlo Method in Statistical Thermodynamics (in Russ.) (Nauka, Moscow, 1977)Google Scholar
  195. R. Zimmermann, K. Kilimann, D. Kremp, W.D. Kraeft, G. Röpke, Phys. Stat. Sol. (b) 90, 175 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Werner Ebeling
    • 1
    Email author
  • Vladimir E. Fortov
    • 2
  • Vladimir Filinov
    • 3
  1. 1.Institut für PhysikHumboldt Universität BerlinBerlinGermany
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations