Physics of Dense Gases, Nonideal Plasmas, and High Energy Density Matter

  • Werner EbelingEmail author
  • Vladimir E. Fortov
  • Vladimir Filinov
Part of the Springer Series in Plasma Science and Technology book series (SSPST)


Here we summarize the most important results in this field of physics, which is growing due to the dominant role of these forms of matter in the cosmos. We describe the progress made in physical studies and the statistical theory of dense gases and nonideal plasmas, including their historical roots in the work of van der Waals, Debye, Saha, Planck, Einstein, and others. We present the basic tools required for the quantum statistical description of nonideal fluid systems, including analytical methods and computer simulations, and we discuss studies of plasma-like matter with high energy density.


  1. A.A. Abrikosov, L. Gorkov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (in Russian) (Moscow, 1962)Google Scholar
  2. A. Alastuey, A. Perez, Virial expansion ot the equation of state of a quantum plasma, Europhys. Lett. 20, 19–24 (1992)Google Scholar
  3. A. Alastuey, V. Ballenegger, W. Ebeling, Comment on direct linear term in the EOS of plasmas, Phys. Rev. E 92, 047101 (2015)Google Scholar
  4. M. Badino, The odd couple: Boltzmann, Planck and applications of statistics to physics 1900–1913. Ann. Phys. (Berlin) 18, 81–101 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. R. Balescu, Statistical Mechanics of Charged Particles (Wiley, London, 1963)zbMATHGoogle Scholar
  6. J.A. Barker, D. Henderson, Perturbation theory and EOS for fluids. J. Chem. Phys. 47, 2856 (1967)ADSCrossRefGoogle Scholar
  7. K. Beneke, Erich Hückel und seine Arbeiten zur theoretischen Chemie, Mitt. Kolloid-Gesellschaft 274–304 (1999)Google Scholar
  8. B.J. Berne, G. Ciccotti, D.F. Coker (eds.), Classical and Quantum Dynamics of Condensed Phase Simulation (World Scientific, Singapore, 1998)Google Scholar
  9. K. Binder (ed.), Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979), p. 1986Google Scholar
  10. D. Blaschke, D. Sedrakian, Superdense QCD Matter and Compact Stars (Springer, Berlin, 2006)CrossRefGoogle Scholar
  11. D. Blaschke, M. Buballa, A. Dubinin, G. Röpke, D. Zablocki, Generalized Beth–Uhlenbeck approach to mesons and diquarks in hot dense quark matter. Ann. Phys. 348, 228–255 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. N.N. Bogolyubov, Collected Papers, vol. 1–12 (Fizmatlit, Moscow, 2005–2009)Google Scholar
  13. N.N. Bogolyubov, N.N. Bogolyubov Jr., Introduction to Quantum Statistical Mechanics (Gordon and Breach, New York, 1992)Google Scholar
  14. M. Bonitz, Quantum Kinetic Theory (B.G. Teubner, Stuttgart, 1998); 2nd edition (Springer, Berlin, 2016)Google Scholar
  15. M. Bonitz, W.D. Kraeft (eds.), Kinetic theory of nonideal plasmas. J. Phys.: Conf. Ser. 11 (2005)Google Scholar
  16. M. Bonitz, D. Semkat (eds.), Introduction to Computational Methods for Many Body Systems (Rinton Press, Princeton, 2006)Google Scholar
  17. H.P. Bonzel, A.M. Bradshaw, G. Ertl (eds.), Physics and Chemistry of Alkali Metal Adsorption (Elsevier, Amsterdam, 1989)Google Scholar
  18. L. Brillouin, Les statistiques quantiques et leurs applications, Paris 1930; German translation, Berlin (1931)Google Scholar
  19. L.S. Brown, L.G. Yaffe, Effective field theory of highly ionized plasmas. Phys. Rep. 340, 1–164 (2001)ADSCrossRefzbMATHGoogle Scholar
  20. S.G. Brush, H.L. Sahlin, E. Teller, Monte Carlo study of a one-component plasma I. J. Chem. Phys. 45, 2102 (1966)ADSCrossRefGoogle Scholar
  21. D.M. Ceperley, Path integrals in the theory of condensed Helium. Rev. Mod. Phys. 65, 279–356 (1995)ADSCrossRefGoogle Scholar
  22. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd edn. (Cambridge Mathematical Library, Cambridge, 1991)zbMATHGoogle Scholar
  23. A.P. Chetverikov, W. Ebeling, M.G. Velarde. Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons. Eur. Phys. J. B 70, 217–227 (2011)Google Scholar
  24. P. Debye, Handelingen Nederlandsch Natuuren Congres (1923)Google Scholar
  25. P. Debye, E. Hückel, Theorie der Elektrolyte I. Physik Z. 24, 185 (1923)zbMATHGoogle Scholar
  26. C. Deutsch, Nodal expansion in a real matter plasma. Phys. Lett. A 60, 317–318 (1977)Google Scholar
  27. H.E. De Witt, Evaluation of the quantum-mechanical ring sum with Boltzmann statistics. J. Math. Phys. 3, 1216–1228 (1962)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. H.E. De Witt, M. Schlanges, A.Y. Sakakura, W.D. Kraeft, Low density expansion of the equation of state for a quantum electron gas. Phys. Lett. A 197, 326 (1995)ADSCrossRefGoogle Scholar
  29. W. Ebeling, Statistical thermodynamics of bound states in plasmas (in Dt.). Ann. Physik (Leipzig) 19, 104–112 (1967)ADSCrossRefGoogle Scholar
  30. W. Ebeling, Derivation of free energy of quantum plasmas from exact scattering shifts (in Dt.). Ann. Physik 22, 33–39, 383–391 (1968)Google Scholar
  31. W. Ebeling, Equation of state and Saha equation of partially ionized plasmas. Physica 38, 378 (1968); 73, 573–584 (1974)Google Scholar
  32. W. Ebeling, On the possibility of diffusion instabilities in weak electrolytes. Z. Phys. Chem. 247, 340 (1971); Quantum statistics of ionization. Phys. Stat. Sol. (b) 46, 243–255 (1971)Google Scholar
  33. W. Ebeling, D. Hoffmann, The Berlin school of thermodynamics founded by Helmholtz and Clausius. Eur. J. Phys. 12, 1–9 (1991)CrossRefGoogle Scholar
  34. W. Ebeling, D. Hoffmann, Eine Vorlage Einsteins in der Preuischen Akademie der Wissenschaften 1924, Leibniz Online, EbelingHoffmann.pdf (2014)Google Scholar
  35. W. Ebeling, W.D. Kraeft, D. Kremp, Theory of Bound States and Ionisation Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976). Extended Russ. translation Mir, Moscow (1979)Google Scholar
  36. W. Ebeling, V.F. Fortov, YuL Klimontovich, et al. (eds.), Transport Properties of Dense Plasmas (Birkhäuser, Boston, 1984)Google Scholar
  37. W. Ebeling, A. Förster, V.E. Fortov, V.K. Gryaznov, AYa. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991)Google Scholar
  38. W. Ebeling, A. Förster, V. Fortov, V. Gryaznov, A. Polishchuk, Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991) (Russ. transl. Moskva, Ishevsk, 2007)Google Scholar
  39. W. Ebeling, M.Yu. Romanovsly, I.M. Sokolov, Velocity distributions and kinetic equations including Levy power law tails. Contr. Plasma Phys, 49, 704–712 (2009)Google Scholar
  40. D. Ebert, Eichtheorien: Grundlage der Elementarteilchenphysik (VCH-Verlag, Weinheim, 1989)Google Scholar
  41. J. Eggert, Über den Dissoziationzustand der Fixsterngase. Physikalische Zeitschrift 20, 570–574 (1919)Google Scholar
  42. A. Einstein, Quantentheorie des einatomigen idealen gases. Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl. 22, 261–267 (1924); 23, 3–14 (1925)Google Scholar
  43. D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen (författare) (Almqvist and Wiksell, Uppsala, 1917)Google Scholar
  44. H. Falkenhagen, W. Ebeling, Equilibrium properties of ionized dilute electrolytes, in Ionic Interactions, ed. by S. Petrucci (Academic Press, New York, 1971)Google Scholar
  45. R. Feistel, W. Ebeling, Evolution of Complex Systems (Kluwer, Dordrecht, 1989)zbMATHGoogle Scholar
  46. R. Feistel, W. Ebeling, Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim, 2011)CrossRefzbMATHGoogle Scholar
  47. H. Fehske, R. Schneider, A. Weibe (eds.), Computational Many-Particle Physics (Springer, Berlin, 2008)Google Scholar
  48. R.P. Feynman, Statistical Mechanics (Benjamin, Reading Mass, 1972)Google Scholar
  49. M.E. Fisher, Y. Levin, Criticality in ionic fluids: Debye–Hückel theory, Bjerrum, and beyond. Phys. Rev. Lett. 71, 2138 (1993)CrossRefGoogle Scholar
  50. H. Friedman, Ionic Solution Theory (Wiley Interscience, New York, 1962)Google Scholar
  51. V. Fortov, M. Mochalov et al., Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
  52. V.E. Fortov, Extreme States of Matter (Russ) (FizMatGis, Moskva, 2009). New edition 2015Google Scholar
  53. V.E. Fortov, Equation of State of Matter (FizMatGis, Moskva, 2013). (in Russian)Google Scholar
  54. V.E. Fortov, Extreme States of Matter: On Earth and in the Cosmos, The Frontiers Collection (Springer, Berlin, 2011); Extreme States of Matter, High Energy Density Physics (Springer, Berlin, 2016)Google Scholar
  55. V.L. Ginzburg, The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics (Springer, Berlin, 2001)CrossRefGoogle Scholar
  56. B. Greene, The Fabric of the Cosmos (Knopf, New York, 2004)zbMATHGoogle Scholar
  57. H. Haken, P. Plath, W. Ebeling, YuM Romanovsky, Beiträge zur Geschichte der Synergetik (Springer, Berlin, 2016)CrossRefGoogle Scholar
  58. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, New York, 1976); J.N. Henn, J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lecture Notes in Physics (Springer, Berlin, 2014)Google Scholar
  59. P.C. Hemmer, H. Holden, S. Kjelstrup Ratkje (eds.), The Collected Works of Lars Onsager (World Scientific, Singapore, 1996)Google Scholar
  60. F. Hensel, S. Juengst, F. Noll, R. Winter, in Localisation and Metal Insulator Transitions, ed. by D. Adler, H. Fritsche (Plenum, New York, 1985)Google Scholar
  61. T.L. Hill, Statistical Mechanics, Principles and Selected Applications (McGraw Hill, New York, 1956)zbMATHGoogle Scholar
  62. J.O. Hirschfelder, C.F. Curtis, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)zbMATHGoogle Scholar
  63. P. Hoyng, Relativistic Astrophysics and Cosmology (Springer, Dordrecht, 2006)CrossRefGoogle Scholar
  64. S. Ichimaru, Statistical Plasma Physics (Addison-Wesley, Redwood, 1992)Google Scholar
  65. D.R. Inglis, E. Teller, Astrophysics 90, 430 (1939)Google Scholar
  66. G. Kalman (ed.), Strongly Coupled Coulomb Systems (Pergamon Press, Oxford, 1998)Google Scholar
  67. G. Kelbg, Quantenstatistik der Plasmen. Annalen der Physik 12, 354 (1963)ADSMathSciNetCrossRefGoogle Scholar
  68. G. Kelbg, Einige Methoden der statistischen Thermodynamik hochionisierter Plasmen, Ergebnisse der Plasmaphysik aund Gaselektronik, vol. 3 (Akademie-Verlag, Berlin, 1972)Google Scholar
  69. C. Kirsten, H.-G. Körber (eds.), Physiker über Physiker (Akademie-Verlag, Berlin, 1975)Google Scholar
  70. H. Kleinert, Path integrals in quantum mechaniscs, statistics, polymer physics and financial markets, World Scientific, Singapore (1995)Google Scholar
  71. Yu.L. Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasmas (Izdat MGU, Moscow, 1964); English translation (Pergamon, Oxford, 1967)Google Scholar
  72. Yu.L. Klimontovich, Statistical Physics (Russ.) (Nauka, Moscow, 1982); English translation (Harwood, New York, 1986)Google Scholar
  73. W.D. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Akademie-Verlag and Pergamon Press, Berlin and New York, 1986)Google Scholar
  74. W.D. Kraeft, D. Kremp, G. Röpke, Direct linear term in the equation of state of plasmas. Phys. Rev. E 91, 013108 (2015)ADSCrossRefGoogle Scholar
  75. M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Science 348(6242), 1455–1460 (2015)Google Scholar
  76. G. Kalman, P. Carini (eds.), Strongly Coupled Plasma (Plenum Press, New York, 1978)Google Scholar
  77. V.P. Krainov, M.B. Smirnov, Cluster beams in the super-intense femtosecond laser pulse. Phys. Rep. 370, 237–331 (2002)ADSCrossRefGoogle Scholar
  78. V.P. Krainov, M.B. Smirnov, B.M. Smirnov, Femtosecond excitation of cluster beams. Phys. Usp. 50, 907–931 (2007)ADSCrossRefGoogle Scholar
  79. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)zbMATHGoogle Scholar
  80. A.I. Larkin, Thermodynamic functions of a low-temperature plasma. JETP 11, 1363–1364 (1960)Google Scholar
  81. J.D. Landau, E.M. Lifshits,Statistical Physics (Part I), Nauka Moska 1976, German translation Berlin 1979, English translation Statistical Physics, Part 1, vol. 5, 3rd edn. (Butterworth–Heinemann, London, 1980)Google Scholar
  82. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics, vol. X (Publishing Science, Moscow, 1979)Google Scholar
  83. A. Linde, What Energy Drives the Universe (Stanford University, Stanford, 2005)Google Scholar
  84. W.R. Magro, D.M. Ceperley, C. Pierleoni, B. Bernu, Phys. Rev. Lett. 76, 1240 (1996)ADSCrossRefGoogle Scholar
  85. P.C. Martin, J. Schwinger, Theory of many-particle systems. Phys. Rev. 115, 1342–1432 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. J.E. Mayer, Theory of ionic solutions. J. Chem. Phys. 18, 1426–1436 (1950)ADSCrossRefGoogle Scholar
  87. B. Militzer, R. Pollock, Variational density matrix method for warm condensed matter and dense hydrogen. Phys. Rev. E 61, 3470–382 (2000)ADSCrossRefGoogle Scholar
  88. E. Montroll, J. Ward, Quantum statistics of interacting particles. Phys. Fluids 1, 55 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. T. Morita, Equation of state of high temperature plasma. Prog. Theor. Phys. (Kyoto) 22, 757–774 (1959)Google Scholar
  90. N. Mott, The transition to the metallic state. Phil. Mag. 6, 287–309 (1961)ADSCrossRefGoogle Scholar
  91. V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity (NOOK Book, 2007)Google Scholar
  92. V. Mukhanov, Quantum Universe (Plenary lecture DPG, Berlin, 2015)Google Scholar
  93. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)zbMATHGoogle Scholar
  94. G.E. Norman, A. Starostin, High Temp. 6, 394 (1968); 8, 381 (1970)Google Scholar
  95. D. Pines, The Many Body Problem (Benjamin, New York, 1961)zbMATHGoogle Scholar
  96. D. Pines, P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, 1966); Russ. Translation Mir, Moskva (1967)Google Scholar
  97. M. Planck, Zur Quantenstatistik des Bohrschen Atommodells. Annalen der Physik 75, 673–684 (1924)ADSCrossRefGoogle Scholar
  98. R. Redmer, G. Röpke, Progress in the theory of dense strongly coupled plasmas. Contr. Plasma Phys. 50, 970–985 (2010)ADSCrossRefGoogle Scholar
  99. R. Redmer, B. Holst, F. Hensel (eds.), Metal to Non-Metal Transitions (Springer, Berlin, 2010)zbMATHGoogle Scholar
  100. K. Riewe, R. Rompe, Ann. Phys. (Leipzig) 17, 126 (1938)Google Scholar
  101. R. Rompe, H. Treder, W. Ebeling, Zur grossen Berliner Physik (Teubner, Leipzig, 1987)Google Scholar
  102. H.J. Rothe, Lattice Gauge Theories (World Scientific, Singapore, 2005)CrossRefzbMATHGoogle Scholar
  103. M.N. Saha, Phil. Mag. 40, 472 (1920); Z. Phys. 6, 40 (1921)Google Scholar
  104. H. Satz, Extreme States of Matter in Strong Interaction Physics: An Introduction (Springer, Berlin, 2012)CrossRefzbMATHGoogle Scholar
  105. H. Satz, Ultimate Horizons: Probing the Limits of the Universe (Springer, Berlin, 2013)CrossRefGoogle Scholar
  106. K. Simonyi, Kulturgeschichte der Physik (Urania Verlag and Harri Deutsch, Frankfurt, 1990)Google Scholar
  107. V. Sizyuk, A. Hassanein, T. Sizyuk, J. Appl. Phys. 100, 103106 (2006)ADSCrossRefGoogle Scholar
  108. L. Spitzer, Physics of Fully Ionized Plasmas (Wiley, New York, 1961)Google Scholar
  109. V.Ya. Ternovoi, A.S. Filimonov, V.E. Fortov, S.V. Kvitov, D.D. Nikolaev, A.A. Pyalling, Phys. B 265, 6 (1999)ADSCrossRefGoogle Scholar
  110. G.E. Uhlenbeck, E. Beth, The quantum theory of the non-ideal gas I. Deviations from the classical theory. Physica 3, 729–745 (1936)ADSCrossRefzbMATHGoogle Scholar
  111. E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933)ADSCrossRefGoogle Scholar
  112. J.D. van der Waals, Over de Continuiteit van den Gas- en Vloeistoftoestand (Continuity of fluid and gaseous state). Dissertation, University of Leiden (1873)Google Scholar
  113. A.A. Vedenov, A.I. Larkin, Equation of state of plasmas (in Russ.). Zh. eksp. teor. Fiz. 36, 1133–1142 (1959); Sov. Phys. JETP 9, 806–821 (1959)Google Scholar
  114. J. Von Neumann, Mathematische Grundlagen der Quantenmechanik (1932)Google Scholar
  115. P.N. Voronzov-Veliaminov, A.M. Eliashevich, V.P. Morgenstern, V.P. Chassovskich, Teplophys. Vysokh. Temp. 8, 277 (1970); 14, 199 (1976)Google Scholar
  116. S.T. Weir, A.C. Mitchell, W.J. Nellis, Phys. Rev. Lett. 76, 860 (1996)ADSCrossRefGoogle Scholar
  117. H. Whitley, A. Alastuey, J.A. Gaffney, R. Cauble, W.D. Kraeft, M. Bonitz, A tribute to the pioneers of the strongly coupled plasmas: Hugh E. De Witt, Bernard Jancovici, Forest A. Rogers. Contr. Plasma Phys. 55, 102–115 (2015)Google Scholar
  118. K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon Plasma: From Big Bang to Little Bang (Cambridge University Press, Cambridge, 2005)Google Scholar
  119. E.P. Wigner, Interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)ADSCrossRefzbMATHGoogle Scholar
  120. V.M. Zamalin, G.E. Norman, V.S. Filinov, Monte Carlo Method in Statistical Mechanics (in Russ.) (Nauka, Moscow, 1977)Google Scholar
  121. D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes (Akademie, Berlin, 1996)zbMATHGoogle Scholar
  122. J. Zweiback, T.E. Cowan, T. Dimitre et al., Phys. Rev. Lett. 85, 3640 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Werner Ebeling
    • 1
    Email author
  • Vladimir E. Fortov
    • 2
  • Vladimir Filinov
    • 3
  1. 1.Institut für PhysikHumboldt Universität BerlinBerlinGermany
  2. 2.Russian Academy of SciencesMoscowRussia
  3. 3.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations