Skip to main content

Column Generation Approach to the Convex Recoloring Problem on a Tree

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 213)

Abstract

The convex recoloring (CR) problem is to recolor the nodes of a colored graph at minimum number of color changes such that each color induces a connected subgraph. We adjust to the convex recoloring problem the column generation framework developed by Johnson et al. (Math Program 62:133–151, 1993). For the convex recoloring problem on a tree, the subproblem to generate columns can be solved in polynomial time by a dynamic programming algorithm. The column generation framework solves the convex recoloring problem on a tree with a large number of colors extremely fast.

Keywords

  • Convex recoloring problem
  • Phylogenetic tree
  • Bioinformatics
  • Clustering problem
  • Column generation
  • Linear programming
  • Large scale optimization
  • Set partition problem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-66616-7_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-66616-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Campêlo, M., Huiban, C.G., Sampaio, R.M., Wakabayashi, Y.: On the complexity of solving or approximating convex recoloring problems. In: Proceedings of the 19th International Conference on Computing and Combinatorics. Lecture Notes in Computer Science, vol. 7936, pp. 614–625 (2013)

    CrossRef  MATH  Google Scholar 

  2. Campêlo, M., Freire, A.S., Lima, K.R., Moura, P., Wakabayashi, Y.: The convex recoloring problem: polyhedra, facets and computational experiments. Math. Program. 156, 303–330 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Chopra, S., Filipecki, B., Lee, K., Ryu, M., Shim, S., Van Vyve, M.: The convex recoloring problem on a tree. Math. Program. (2016). doi:10.1007/s10107-016-1050-2. Online

    MATH  Google Scholar 

  4. Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Program. 62 133–151 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Kanj, I.A., Kratsch, D.: Convex recoloring revisited: complexity and exact algorithms. In: Proceedings of the 15th Annual International Conference on Computing and Combinatorics (COCOON 2009). Lecture Notes in Computer Science, vol. 5609, pp. 388–397 (2009)

    CrossRef  MATH  Google Scholar 

  6. Matsen, F.A., Gallagher, A.: Reconciling taxonomy and phylogenetic inference: formalism and algorithms for describing discord and inferring taxonomic roots. Algorithms Mol. Biol. 7(8), 1–12 (2012)

    Google Scholar 

  7. McDonald, D., Price, M., Goodrich, J., Nawrocki, E., DeSantis, T., Probst, A., Andersen, G., Knight, R., Hugenholtz, P.: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012)

    CrossRef  Google Scholar 

  8. Moran, S., Snir, S.: Convex recolorings of strings and trees: definitions, hardness results and algorithms. In: Proceedings WADS 2005: 9th International Workshop on Algorithms and Data Structures, pp. 218–232 (2005)

    Google Scholar 

  9. Moran, S., Snir, S.: Convex recolorings of strings and trees: definitions, hardness results and algorithms. J. Comput. Syst. Sci. 74, 850–869 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Moran, S., Snir, S., Sung, W.K.: Partial convex recolorings of trees and galled networks: tight upper and lower bounds. ACM Trans. Algorithms 7, 42 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangho Shim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chopra, S., Erdem, E., Kim, E., Shim, S. (2017). Column Generation Approach to the Convex Recoloring Problem on a Tree. In: Takáč, M., Terlaky, T. (eds) Modeling and Optimization: Theory and Applications. MOPTA 2016. Springer Proceedings in Mathematics & Statistics, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-66616-7_3

Download citation