Advertisement

Examples from the Boundaries of Geographic Survey: Architecture and Flood Modeling

  • Norbert Barkóczi
  • László Bertalan
  • Gergely Szabó
  • Márton Deák
  • Szabolcs Kari
  • Judit Csenge Vizi
  • Márk Zagorácz
  • András Sik
  • Miklós Riedel
  • Balázs Kohán
  • János Mészáros
  • Zoltán Szalai
  • Orsolya Szabó
  • Balázs Nagy
Chapter

Abstract

This chapter will be more practical in nature. It will discuss two fields in which UAV-based photogrammetry proves a particularly efficient tool in geographic and architectural surveys. We will also reflect on the expectable accuracy of these relatively low-cost instruments.

The first section will present a case study about the accuracy assessment of the digital stereophotogrammetry method (5.1). We will then present examples from two fields: the first one is architecture (5.2) and the second is flood modeling (5.3).

We give some examples about UAV applications in architecture because high-detail surveys focusing on one building are very different from low-detail surveys covering an entire settlement. The former are mostly used by architects and civil engineers; the latter belong more to the field of spatial planners and urban geographers. Flood modeling is mostly used by geomorphologists and disaster management experts and is more connected to physical geography.

These examples might be very different from a purely geographical point of view, but they present some methodological similarities. They provide an excellent base for comparing the criteria of different survey and flight planning techniques. In the case of building-scale architectural survey, the camera looks horizontally, and small details – in the order of centimeters or millimeters – must be captured. The output is a point cloud which will be later imported into an architectural software.

In the case of settlement-scale survey, the camera is looking at nadir, and 10–15 cm error is still not a big problem. The output is usually more GIS-related: this means that an orthophoto, a raster, or a digital elevation model is the absolute minimum. The point cloud is also a possible output which can be used, for example, to detect low-detail building models.

If we want to use a UAV for flood modeling, the acquisition method is similar to that of a settlement-wide survey: the camera points to the nadir and the covered area is relatively large; the main – and possibly only – output, however, is the digital terrain model.

The following sections focus on survey and data processing methods – mostly in point cloud format. The reader is therefore assumed to have some basic understanding of geographic survey and remote sensing in general.

Keywords

UAV-based architectural survey UAV-based topographical survey Level of detail UAV-based landscape monitoring UAV-based risk management Flood modeling 

References

  1. Achille C, Adami A et al (2015) UAV-based photogrammetry and integrated technologies for architectural applications – methodological strategies for the after-quake survey of vertical structures in mantua (Italy). Sensors 15(7):15520–15539. doi: 10.3390/s150715520 CrossRefGoogle Scholar
  2. Ahmad A (2011) Digital mapping using low altitude UAV. Pertanika J Sci Technol 19(S):51–58Google Scholar
  3. Ballabeni A, Apollonio FI et al (2015) Advances in image pre-processing to improve automated 3D reconstruction. The International Archives of the Photogrammetry. Remote Sens Spat Inf Sci XL-5(W4):315–323. doi: 10.5194/isprsarchives-XL-5-W4-315-2015 Google Scholar
  4. Barry P, Coakley R (2013) Field accuracy test of RPAS photogrammetry. Int Arch Photogramm Remote Sens Spat Inf Sci XL-1(W2):27–31CrossRefGoogle Scholar
  5. Bartholy J, Pongrácz R, Kis A (2015) Projected changes of extreme precipitation using multi-model approach. Időjárás 119(2):129–142Google Scholar
  6. Bertalan L, Szabó G (2015) Lateral erosion monitoring along a southern section of (Slaná) river. In: Křížova A (ed) Detailed aerial mapping and flood impact monitoring in the V4 region. University Faculty of Mathematics and Physics, BratislavaGoogle Scholar
  7. BIMForum (2016) Level of development (LOD) specification. Available via http://bimforum.org/lod/. Accessed 8 May 2017
  8. Biljecki F (2017) Level of detail in 3D city models. PhD Thesis, TU Delf. doi: 10.4233/uuid:f12931b7-5113-47ef-bfd4-688aae3be248
  9. Boehler W, Marbs A (2004) 3D scanning and photogrammetry for heritage recording: a comparison. Geoinformatics 2004:291–298Google Scholar
  10. Deák M, Kari Sz et al (2017) Novel façade surveying method: comparison of photogrammetry, static and mobile laser scanning. Metszet, in press (in Hungarian)Google Scholar
  11. Egels Y, Kasser M (2002) Digital photogrammetry. Taylor & Francis, LondonGoogle Scholar
  12. Fritz A, Kattenborn T, Koch B (2013) UAV-based photogrammetric point clouds – tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. International Archives of the Photogrammetry. Remote Sens Spat Inf Sci XL-1(W2):141–146Google Scholar
  13. Grussenmeyer P, Landes T et al (2008) Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII Part B5 37:213–218Google Scholar
  14. Hobi ML, Ginzler C (2012) Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data. Sensors 12(5):6347–6368. doi: 10.3390/s120506347 CrossRefGoogle Scholar
  15. Kari Sz , Lellei L et al (2016) BIM to GIS and GIS to BIM. Paper presented at the CAADence in Architecture. 16–17 June 2016, Budapest, Hungary, p 67–72. doi:  10.3311/CAADence.1645
  16. Koutsoudis A, Vidmar B et al (2013) Multi-image 3D reconstruction data evaluation. J Cult Herit 15(1):73–79. doi: 10.1016/j.culher.2012.12.003 CrossRefGoogle Scholar
  17. Li Z (1992) Variation of the accuracy of digital terrain models with sampling interval. Photogramm Rec 14(79):113–128. doi: 10.1111/j.1477-9730.1992.tb00211.x CrossRefGoogle Scholar
  18. Li Z (1994) Comparative study of the accuracy of digital terrain models (DTMs) based on various data models. ISPRS J Photogramm Remote Sens 49(1):2–11. doi: 10.1016/0924-2716(94)90051-5 CrossRefGoogle Scholar
  19. Linder W (2009) Digital photogrammetry a practical course. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  20. Mészáros J, Árvai M et al (2016) UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment. Geophys Res Abstr 18: 15430. Paper presented at the EGU General Assembly 2016, 17–22 April, 2016 in Vienna, AustriaGoogle Scholar
  21. Pacheco JA (2003) Digital stereo image interpretation for natural hazard assessment. Thesis, International Institute for Geo-Information Science and Earth ObservationGoogle Scholar
  22. Pongrácz R, Bartholy J, Kis A (2014) Estimation of future precipitation conditions for Hungary with special focus on dry periods. Időjárás 118(4):305–321Google Scholar
  23. Radhadevi PV, Jacobsen K et al (2009) Comparison of digital elevation models generated from SPOT-5 HRS stereo data and CARTOSAT-1 stereo data. Paper presented at the ISPRS Hannover Workshop 2009, ‘High-Resolution Earth Imaging for Geospatial Information, p 1–5Google Scholar
  24. Rayburg S, Thoms MC, Neave M (2009) A comparison of digital elevation models generated from different data sources. Geomorphology 106(1–3):261–270. doi: 10.1016/j.geomorph.2008.11.007 CrossRefGoogle Scholar
  25. Szabó G, Mecser N (2014) New tecnhique in spatial data collection-low cost DSM and ortophoto generating with drone. In: Boglárka B (ed) Az elmélet és a gyakorlat találkozása a térinformatikában V: Térinformatikai konferencia és szakkiállítás. Available via http://geogis.detek.unideb.hu/TKonferencia/2014/Konferenciakotet_2014.pdf. Accessed 8 May 2017 (in Hungarian)
  26. Szabó S, Enyedi P, Horváth M, Kovács Z, Burai P, Csoknyai T, Szabó G (2015) Automated registration of potential locations for solar energy production with light detection and ranging (LiDAR) and small format photogrammetry. J Clean Prod 112(5):3820–3829. doi: 10.1016/j.jclepro.2015.07.117 Google Scholar
  27. Tang S, Liu Y et al (2015) Research on the processing technology of low-altitude unmanned aerial vehicle images. Paper presented at the Proceedings of the SPIE 9808, International Conference on Intelligent Earth Observing and Applications 2015, 980830 (December 9, 2015). doi:  10.1117/12.2207583
  28. Tampubolon W, Reinhardt W (2014) UAV data processing for large scale topographical mapping. Int Arch Photogramm Remote Sens Spat Inf Sci XL-5:565–572. doi: 10.5194/isprsarchives-XL-5-565-2014 CrossRefGoogle Scholar
  29. TeIR-KSH. Available via https://www.teir.hu/helyzet-ter-kep/kivalasztott-mutatok.html?xteiralk=htk&xids=1001,1002&xtertip=T&xterkod=1221 (in Hungarian). Accessed 8 May 2017Google Scholar
  30. Turner D, Lucieer A, Wallace L (2014) Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans Geosci Remote Sens 52(5):2738–2745. doi: 10.1109/TGRS.2013.2265295 CrossRefGoogle Scholar
  31. Van Leeuwen B, Tobak Z et al (2009) Small format aerial photography – a cost effective approach for visible, near Infrared and thermal digital imaging. In: G. G. Car A. (ed) Geospatial crossroads @ GI_Forum’ 09. Heidelberg: Proceedings of the Geoinformatics Forum Salzburg, p 200–209Google Scholar
  32. Verhoeven G (2011) Software review: taking computer vision aloft – archaeological three-dimensional reconstructions from aerial photographs with PhotoScan. Archaeol Prospect 18(1):67–73. doi: 10.1002/arp.399 CrossRefGoogle Scholar
  33. Volk R, Stengel J, Schultmann F (2014) Building information models (BIM) for existing buildings – literature review and future needs. Autom Constr 38:109–127. doi: 10.1016/j.autcon.2013.10.023 CrossRefGoogle Scholar
  34. Weng Q (2002) Quantifying uncertainty of digital elevation models derived from topographic maps. In: Richardson DE, van Oosterom P (eds) Advances in spatial data handling. Springer, Berlin, pp 403–418CrossRefGoogle Scholar
  35. Wierzbicki D, Kedzierski M, Fryskowska A (2015) Assessment of the influence of UAV image quality on the orthophoto production. The International Archives of the Photogrammetry. Remote Sens Spat Inf Sci XL-1(W4):873–877. doi: 10.5194/isprsarchives-XL-1-W4-1-2015 Google Scholar
  36. Zagorácz M, Etlinger J, Iványi P (2013) Accurate quantity data extraction from low level of detail BIM models. Paper presented at the Conference: The Fourteenth International Conference on Civil, Structural and Environmental Engineering. doi:  10.4203/ccp.102.155
  37. Zhang W, Qi J et al (2016) An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens 6(8):501. doi: 10.3390/rs8060501 CrossRefGoogle Scholar
  38. Zhang Y, Xiong J, Hao L (2011) Photogrammetric processing of low-altitude images acquired by unpiloted aerial vehicles. Photogramm Rec 26(134):190–211. doi: 10.1111/j.1477-9730.2011.00641.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Norbert Barkóczi
    • 1
  • László Bertalan
    • 1
  • Gergely Szabó
    • 1
  • Márton Deák
    • 2
  • Szabolcs Kari
    • 2
  • Judit Csenge Vizi
    • 2
  • Márk Zagorácz
    • 2
  • András Sik
    • 2
  • Miklós Riedel
    • 2
  • Balázs Kohán
    • 3
  • János Mészáros
    • 4
  • Zoltán Szalai
    • 3
    • 5
  • Orsolya Szabó
    • 6
  • Balázs Nagy
    • 7
  1. 1.University of DebrecenDebrecenHungary
  2. 2.Lechner Tudásközpont BudapestBudapestHungary
  3. 3.Department of Environmental and Landscape GeographyEötvös Loránd UniversityBudapestHungary
  4. 4.Hungarian Academy of Sciences, Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Department of Soil Mapping and Environmental InformaticsTihanyHungary
  5. 5.Hungarian Academy of SceincesGeographical Institute, Research Centre for Astronomy and Earth SciencesBudapestHungary
  6. 6.Department of EconomicsPartium Christian UniversityOradeaRomania
  7. 7.Department of Physical GeographyEötvös Loránd UniversityBudapestHungary

Personalised recommendations