Abstract

With CMOS technology scaling, the analog and mixed-signal circuits face more and more design challenges and suffer a lot in accuracy. At the same time, digital circuits benefit from technology scaling in terms of improved timing accuracy and reduced power consumption.

References

  1. 1.
    V.B. Boros, A digital proportional integral, and derivative feedback controller for power conditioning equipment, in IEEE Power Electronics Specialists Conference (1977), pp. 135–141Google Scholar
  2. 2.
    J.P. Hurrell, D.C. Pridmore-Brown, A.H. Silver, Analog-to-digital conversion with unlatched SQUID’s. IEEE Trans. Electron Devices 27(10), 1887–1896 (1980)Google Scholar
  3. 3.
    M. Hovin, A. Olsen, T.S. Lande, C. Toumazou, Delta-sigma modulators using frequency-modulated intermediate values. IEEE J. Solid-State Circuits 32(1), 13–22 (1997)Google Scholar
  4. 4.
    M.Z. Straayer, M.H. Perrott, A 12-bits, 10-MHz bandwidth, continuous-time Delta-Sigma ADC with a 5-bits, 950-MS/s VCO-based quantizer. IEEE J. Solid-State Circuits 43(4), 805–814 (2008)Google Scholar
  5. 5.
    M.Z. Straayer, M.H. Perrott, A 10-bit 20-MHz 38-mW 950-MHz CT \(\varDelta \varSigma \) ADC with a 5-bit noise-shaping VCO-based quantizer and DEM circuit in 0.13-\(\upmu \)m CMOS, in VLSI Symposium Dig. (2007), pp. 246–247Google Scholar
  6. 6.
    J. Kim, T.K. Jang, Y.G. Yoon, S.H. Cho, Analysis and design of voltage-controlled oscillator based analog-to-digital converter. IEEE Trans. Circuits Syst. I Regul. Pap. 57(1), 18–30 (2010)Google Scholar
  7. 7.
    M. Park, M.H. Perrott, A 0.13 \(\upmu \)m CMOS 78 dB SNDR 87 mW 20 MHz BW CT \(\varDelta \varSigma \) ADC with VCO-based integrator and quantizer, in 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, ISSCC (2009), pp. 170–171Google Scholar
  8. 8.
    M. Park, M.H. Perrott, A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time \(\varDelta \varSigma \) ADC with VCO-based integrator and quantizer implemented in 0.13 \(\upmu \)m CMOS. IEEE J. Solid-State Circuits 44(12), 3344–3358 (2009)Google Scholar
  9. 9.
    K. Reddy, Rao S., R. Inti, B. Young, A. Elshazly, M. Talegaonkar, P.K. Hanumolu, A 16 mW 78 dB-SNDR 10 MHz-BW CT-DSM ADC using residue-cancelling VCO-based quantizer, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2012), pp. 152–154Google Scholar
  10. 10.
    K. Reddy, Rao S., R. Inti, B. Young, A. Elshazly, M. Talegaonkar, P.K. Hanumolu, A 16-mW 78-dB SNDR 10-MHz BW CT \(\varDelta \varSigma \) ADC using residue-cancelling VCO-based quantizer. IEEE J. Solid-State Circuits, 47(12), 2916–2927 (2012)Google Scholar
  11. 11.
    G. Taylor, I. Galton, A mostly-digital variable-rate continuous-time ADC \(\varDelta \varSigma \) modulator, in 2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2010), pp. 298–299Google Scholar
  12. 12.
    G. Taylor, I. Galton, A mostly-digital variable-rate continuous-time Delta-Sigma modulator ADC. IEEE J. Solid-State Circuits 45(12), 2634–2646 (2010)Google Scholar
  13. 13.
    J. Daniels, W. Dehaene, M. Steyaert, A. Wiesbauer, A 0.02 mm\(^2\) 65 nm CMOS 30 MHz BW all-digital differential VCO-based ADC with 64 dB SNDR, in 2010 IEEE Symposium on VLSI Circuits (VLSIC) (2010), pp. 155–156Google Scholar
  14. 14.
    L. Hernandez, S. Paton, E. Prefasi, VCO-based sigma-delta modulator with PWM precoding. Electron. Lett. 47(10), 588–589 (2011)Google Scholar
  15. 15.
    S. Rao, B. Young, A. Elshazly, W. Yin, N. Sasidhar, P.K.Hanumolu, A 71 dB SFDR open-loop VCO-based ADC using 2-level PWM modulation, in 2011 Symposium on VLSI Circuits (VLSIC) (2011), pp. 270–271Google Scholar
  16. 16.
    P. Gao, X. Xing, J. Craninckx, G. Gielen, Design of an intrinsically-linear double-VCO-based ADC with 2nd-order noise shaping, in 2012 Design, Automation and Test in Europe Conference and Exhibition (DATE) (2012), pp. 1215–1220Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.Zhongguancun Dongsheng Technology ParkAnalog Devices, Inc.BeijingChina
  3. 3.Departement Elektrotechniek, ESAT-MICASKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations