A/D Converters and Applications

Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

Considering that a signal can be continuous or discrete in time and amplitude, there are four kinds of signals. Among these, the analog signal (continuous in time and amplitude) and the digital signal (discrete in time and amplitude ) are widely used in electronic circuits and systems.

References

  1. 1.
    M. Park, M.H. Perrott, R.B. Staszewski, A time-domain resolution improvement of an RF-DAC. IEEE Trans. Circuits Syst. II Express Briefs 57(7), 517–521 (2010). JulyCrossRefGoogle Scholar
  2. 2.
    R.H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999). AprMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Schreier, G.C. Temes, Understanding Delta-Sigma Data Converters (Wiley, New York, 2005)Google Scholar
  4. 4.
    W. Cheng, W. Ali, Moon-Jung Choi, K. Liu, T. Tat, D. Devendorf,L. Linder, R. Stevens, A 3b 40GS/s ADC-DAC in 0.12\(\mu \)m SiGe, in 2004 IEEE InternationalSolid-State Circuits Conference, Digest of Technical Papers (ISSCC) (2004), pp. 262–263Google Scholar
  5. 5.
    G. Geelen, 6b 1.1GSample/s CMOS A/D converter, in 2001 IEEE International Solid-State Circuits Conference, Digest of Technical Papers (ISSCC) (2001), pp. 128–129Google Scholar
  6. 6.
    C. Moreland, M. Elliott, F. Murden, J. Young, M. Hensley, R. Stop, A 14b 100MSample/s 3-stage A/D converter, in 2000 IEEE International Solid-State Circuits Conference, Digest of Technical Papers (ISSCC) (2000), pp. 34–35Google Scholar
  7. 7.
    M. Miyahara, I. Mano, M. Nakayama, K. Okada, A. Matsuzawa, 22.6 A 2.2GS, s 7b 27.4 mW time-based folding-flash ADC with resistively averaged voltage-to-time amplifiers, in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco, CA (2014), pp. 388–389Google Scholar
  8. 8.
    K. Kattmann, J. Barrow, A technique for reducing differential non-linearity errors in flash A/D converters, in Solid-State Circuits Conference, Digest of Technical Papers (1991), pp. 170–171Google Scholar
  9. 9.
    P. M. Figueiredo, P. Cardoso, A. Lopes, C. Fachada, N. Hamanishi,K. Tanabe, J. Vital, A 90 nm CMOS 1.2 V 6b 1GS/s two-step subranging ADC, in Solid-State Circuits Conference, ISSCC 2006. Digest of Technical Papers. IEEE International (2006), pp. 2320–2329Google Scholar
  10. 10.
    S.H. Lewis, P.R. Gray, A pipelined 5-Msample/s 9-bit analog-to-digital converter. IEEE J. Solid-State Circ. 22(6), 954–961 (1987). JuneCrossRefGoogle Scholar
  11. 11.
    B. Brandt, J. Lutsky, A 75-mW 10-b 20-MSample/s CMOS subranging ADC with 59-dB SNDR, in 1999 IEEE International Solid-State Circuits Conference, Digest of Technical Papers (ISSCC) (1999), pp. 322-323Google Scholar
  12. 12.
    X. Wang, P.J. Hurst, S.H. Lewis, A 12-bit 20-MS/s pipelined ADC with nested digital background calibration, in Proceedings of IEEE Custom Integrated Circuits Conference (2003), pp. 409–412Google Scholar
  13. 13.
    M.A. Ahmed, Ali, H. Dinc, P. Bhoraskar, C. Dillon, S. Puckett, B. Gray, C. Speir, J. Lanford, J. Brunsilius, P.R. Derounian, B. Jeffries, U. Mehta, M. McShea, R. Stop, A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J. Solid-State Circ. 49(12), 2857–2867 (2014)Google Scholar
  14. 14.
    K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo, A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 \(\mu \)m CMOS, in 2003 IEEE International, Solid-State Circuits Conference, Digest of Technical Papers, ISSCC (2003), pp. 318–319Google Scholar
  15. 15.
    Sung-Ung Kwak, Bang-Sup Song, K. Bacrania, A 15b 5MSample/s low-spurious CMOS ADC, in 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers. 43rd ISSCC (1997), pp. 146–147Google Scholar
  16. 16.
    L. Brooks, Hae-Seung Lee, A 12b, 50 MS/s. Fully differential zero-crossing based pipelined ADC. IEEE J. Solid-State Circ. 44(12), 3329–3343 (2009)Google Scholar
  17. 17.
    N. Sasidhar, Youn-Jae Kook, S. Takeuchi, K. Hamashita, K. Takasuka, P.K. Hanumolu, Un-Ku Moon, A low power pipelined ADC using capacitor and opamp sharing technique with a scheme to cancel the effect of signal dependent kickback. IEEE J. Solid-State Circ. 44(9) 2392–2401 (2009)Google Scholar
  18. 18.
    H.Y. Tai, Y.S. Hu, H.W. Chen, H.S. Chen, 11.2 A 0.85fJ, conversion-step 10b 200kS, s subranging SAR ADC in 40 nm CMOS, IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco, CA (2014), pp. 196–197Google Scholar
  19. 19.
    M. Krmer, E. Janssen, K. Doris, B. Murmann, 14b 35MS, S SAR ADC achieving 75dB SNDR and 99dB SFDR with loop-embedded input buffer in 40nm CMOS, in IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers. San Francisco, CA (2015), pp. 1–3Google Scholar
  20. 20.
    L. Kull1, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Braendli, M. Kossel, Thomas Morf, T. M. Andersen, Y. Leblebici, A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco (2013)Google Scholar
  21. 21.
    I. Dedic, 56Gs/s ADC: Enabling 100GbE, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, San Diego, CA, (2010), pp. 1–3Google Scholar
  22. 22.
    M. Hesener, T. Eichler, A. Hanneberg, D. Herbison, F. Kuttner, and H. Wenske, A 14b 40MS/s redundant SAR ADC with 480MHz clock in 0.13\(\mu \)m CMOS, in IEEE International Solid-State Circuits Conference, ISSCC 2007, Digest of Technical Papers, pp. 248–249 (2007)Google Scholar
  23. 23.
    M. Steiner, N. Greer, A 22.3b 1 kHz 12.7 mW switched-capacitor \(\Delta \Sigma \) modulator with stacked split-steering amplifiers, IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA (2016), pp. 284–286Google Scholar
  24. 24.
    P. Malla, H. Lakdawala, K. Kornegay, and K. Soumyanath, A 28mW spectrum-sensing reconfigurable 20MHz 72dB-SNR 70dB-SNDR DT ADC for 802.11n/WiMAX receivers, in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 496-631, Feb. 2008Google Scholar
  25. 25.
    Y. Dong, J. Zhao, W. Yang, T. Caldwell, H. Shibata, R. Schreier, Q. Meng, J. Silva, D. Paterson, J. Gealow, 15.5 A 930 mW 69 dB-DR 465 MHz-BW CT 1–2 MASH ADC in 28 nm CMOS, IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA (2016), pp. 278–279Google Scholar
  26. 26.
    S. Billa, A. Sukumaran, S. Pavan, A 280 \(\mu \)W 24 kHz-BW 98.5 dB-SNDR chopped single-bit CT \(\Delta \Sigma \)M achieving \(<\)10 Hz 1/f noise corner without chopping artifacts, in Solid-State Circuits Conference, Digest of Technical Papers, ISSCC, pp. 276–277 (2016)Google Scholar
  27. 27.
    B. Murmann, ADC Performance Survey 1997–2016 (2017), http://www.stanford.edu/murmann/adcsurvey.html
  28. 28.
    J. Mikael Gustavsson, Jacob Wikner, and Nianxiong Tan (Springer, CMOS data converters for communications, 2000)Google Scholar
  29. 29.
    Q. Gu, RF system design of transceivers for wireless communications (Springer, 2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.Zhongguancun Dongsheng Technology ParkAnalog Devices, Inc.BeijingChina
  3. 3.Departement Elektrotechniek, ESAT-MICASKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations