Abstract
Environmental analysts and researchers’ time is an expensive and scarce resource that should be used efficiently. Creating analysis products from remote sensing images involves several steps that take time and can be either automatized or centralized. Among all these steps, product’s lineage and reproducibility must be assured. We present CDCol, a geoscience data cube that addresses these concerns and fits the analysis needs of Colombian institutions, the forest and carbon monitoring system.
Keywords
- Coles CD
- Data Cube
- Carbon Monitoring System
- Datacube
- Analysis Ready Data
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
References
Bravo, G., Castro, H., Moreno, A., Ariza-Porras, C., Galindo, G., Valbuena, S., Lozano, P.: Architecture for a Colombian data cube using satellite imagery for environmental applications. In: 2017 Proceedings of Advances in Computing, 12th Colombian Conference, CCC 2017, Cali, Colombia, 19–22 September, chap. 17. Springer International Publishing (2017, in press)
Clark, D.A.: Detecting tropical forests’ responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39(1), 4–19 (2007)
Dubois, P.F., Hinsen, K., Hugunin, J.: Numerical python. Comput. Phys. 10(3), 262–267 (1996)
Dyer, J.M., McClelland, J.: Paradigm change in earth observation-skybox imaging and SkySat-1. In: Hatton, S. (ed.) Proceedings of the 12th Reinventing Space Conference, pp. 69–89. Springer, Cham (2017). doi:10.1007/978-3-319-34024-1_5
Geoscience Australia, CSIRO, NCI: Open data cube core, December 2015. https://github.com/opendatacube/datacube-core
Gitay, H., Suárez, A., Watson, R.T., Dokken, D.J.: Climate change and biodiversity. IPCC Technical Paper V (2002)
Google Earth Engine: A planetary-scale geo-spatial analysis platform, December 2015. https://earthengine.google.com
Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw 5(1), 10 (2017). http://doi.org/10.5334/jors.148
Hoyer, S., Fitzgerald, C., Hamman, J., et al.: xarray: v0.8.0, August 2010. http://dx.doi.org/10.5281/zenodo.59499
Instituto de Hidrología, M.Y.E.A.D.C.I.: Programa Nacional para el Monitoreo y Seguimiento a los Bosques y áreas de aptitud forestal (PMSB): Formulación y plan de implementación. IDEAM (2008). http://capacitacion.siac.ideam.gov.co/SIAC/Programa_nacional_monitoreo_bosques_PMSB_2008.pdf
Ip, A., Evans, B., Lymburner, L., Oliver, S.: The Australian geoscience data cube (AGDC)-a common analytical framework (2015). https://eresearchau.files.wordpress.com/2014/07/eresau2014_submission_85.pdf
Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith, J., Wu, W., Tan, P., Li, F., Killough, B., Minchin, S., Roberts, D., Ayers, D., Bala, B., Dwyer, J., Dekker, A., Dhu, T., Hicks, A., Ip, A., Purss, M., Richards, C., Sagar, S., Trenham, C., Wang, P., Wang, L.W.: The Australian geoscience data cube–foundations and lessons learned. Remote Sens. Environ. (2017). http://www.sciencedirect.com/science/article/pii/S0034425717301086
MacLachlan, C.: Maneuverable microsatellites: the skybox case study. In: 14th International Conference on Space Operations, p. 2492 (2016) http://arc.aiaa.org/doi/pdf/10.2514/6.2016-2492
Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., Ip, A.: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 174, 341–352 (2016). http://www.sciencedirect.com/science/article/pii/S0034425715301929
Ong, C., Caccetta, M., Lau, I., Malthus, T., Thapar, N.: The use of long term earth observation data archives to identify potential vicarious calibration targets in Australia. In: IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy (2015)
Planet Team: Planet application program interface: in space for life on earth, San Francisco, CA, December 2017. https://api.planet.com
Acknowledgments
We thank to Brian Killough from NASA, and Alfredo Delos Santos and Kayla Fox from AMA team, for their support and fruitfully discussions. We also thank to CEOS Australia group for its work and for share it with the world. We thank also to the Environmental Ministry for financial support.
CDCol uses NetCDF format UCAR/Unidata to storage ingested data and results (http://doi.org/10.5065/D6H70CW6).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ariza-Porras, C. et al. (2017). CDCol: A Geoscience Data Cube that Meets Colombian Needs. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-66562-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66561-0
Online ISBN: 978-3-319-66562-7
eBook Packages: Computer ScienceComputer Science (R0)