Skip to main content

CDCol: A Geoscience Data Cube that Meets Colombian Needs

Part of the Communications in Computer and Information Science book series (CCIS,volume 735)


Environmental analysts and researchers’ time is an expensive and scarce resource that should be used efficiently. Creating analysis products from remote sensing images involves several steps that take time and can be either automatized or centralized. Among all these steps, product’s lineage and reproducibility must be assured. We present CDCol, a geoscience data cube that addresses these concerns and fits the analysis needs of Colombian institutions, the forest and carbon monitoring system.


  • Coles CD
  • Data Cube
  • Carbon Monitoring System
  • Datacube
  • Analysis Ready Data

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. 1.


  1. Bravo, G., Castro, H., Moreno, A., Ariza-Porras, C., Galindo, G., Valbuena, S., Lozano, P.: Architecture for a Colombian data cube using satellite imagery for environmental applications. In: 2017 Proceedings of Advances in Computing, 12th Colombian Conference, CCC 2017, Cali, Colombia, 19–22 September, chap. 17. Springer International Publishing (2017, in press)

    Google Scholar 

  2. Clark, D.A.: Detecting tropical forests’ responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39(1), 4–19 (2007)

    CrossRef  MathSciNet  Google Scholar 

  3. Dubois, P.F., Hinsen, K., Hugunin, J.: Numerical python. Comput. Phys. 10(3), 262–267 (1996)

    CrossRef  Google Scholar 

  4. Dyer, J.M., McClelland, J.: Paradigm change in earth observation-skybox imaging and SkySat-1. In: Hatton, S. (ed.) Proceedings of the 12th Reinventing Space Conference, pp. 69–89. Springer, Cham (2017). doi:10.1007/978-3-319-34024-1_5

    CrossRef  Google Scholar 

  5. Geoscience Australia, CSIRO, NCI: Open data cube core, December 2015.

  6. Gitay, H., Suárez, A., Watson, R.T., Dokken, D.J.: Climate change and biodiversity. IPCC Technical Paper V (2002)

    Google Scholar 

  7. Google Earth Engine: A planetary-scale geo-spatial analysis platform, December 2015.

  8. Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw 5(1), 10 (2017).

    CrossRef  Google Scholar 

  9. Hoyer, S., Fitzgerald, C., Hamman, J., et al.: xarray: v0.8.0, August 2010.

  10. Instituto de Hidrología, M.Y.E.A.D.C.I.: Programa Nacional para el Monitoreo y Seguimiento a los Bosques y áreas de aptitud forestal (PMSB): Formulación y plan de implementación. IDEAM (2008).

  11. Ip, A., Evans, B., Lymburner, L., Oliver, S.: The Australian geoscience data cube (AGDC)-a common analytical framework (2015).

  12. Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith, J., Wu, W., Tan, P., Li, F., Killough, B., Minchin, S., Roberts, D., Ayers, D., Bala, B., Dwyer, J., Dekker, A., Dhu, T., Hicks, A., Ip, A., Purss, M., Richards, C., Sagar, S., Trenham, C., Wang, P., Wang, L.W.: The Australian geoscience data cube–foundations and lessons learned. Remote Sens. Environ. (2017).

  13. MacLachlan, C.: Maneuverable microsatellites: the skybox case study. In: 14th International Conference on Space Operations, p. 2492 (2016)

  14. Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., Ip, A.: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 174, 341–352 (2016).

    CrossRef  Google Scholar 

  15. Ong, C., Caccetta, M., Lau, I., Malthus, T., Thapar, N.: The use of long term earth observation data archives to identify potential vicarious calibration targets in Australia. In: IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy (2015)

    Google Scholar 

  16. Planet Team: Planet application program interface: in space for life on earth, San Francisco, CA, December 2017.

Download references


We thank to Brian Killough from NASA, and Alfredo Delos Santos and Kayla Fox from AMA team, for their support and fruitfully discussions. We also thank to CEOS Australia group for its work and for share it with the world. We thank also to the Environmental Ministry for financial support.

CDCol uses NetCDF format UCAR/Unidata to storage ingested data and results (

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christian Ariza-Porras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ariza-Porras, C. et al. (2017). CDCol: A Geoscience Data Cube that Meets Colombian Needs. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66561-0

  • Online ISBN: 978-3-319-66562-7

  • eBook Packages: Computer ScienceComputer Science (R0)