CCC 2017: Advances in Computing pp 775-791

# Axiomatic Set Theory à la Dijkstra and Scholten

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 735)

## Abstract

The algebraic approach by E.W. Dijkstra and C.S. Scholten to formal logic is a proof calculus, where the notion of proof is a sequence of equivalences proved – mainly – by using substitution of ‘equals for equals’. This paper presents $$\mathsf {Set}$$, a first-order logic axiomatization for set theory using the approach of Dijkstra and Scholten. What is novel about the approach presented in this paper is that symbolic manipulation of formulas is an effective tool for teaching an axiomatic set theory course to sophomore-year undergraduate students in mathematics. This paper contains many examples on how argumentative proofs can be easily expressed in $$\mathsf {Set}$$ and points out how the rigorous approach of $$\mathsf {Set}$$ can enrich the learning experience of students. The results presented in this paper are part of a larger effort to formally study and mechanize topics in mathematics and computer science with the algebraic approach of Dijkstra and Scholten.

## Keywords

Axiomatic set theory Dijkstra-Scholten logic Derivation Formal system Zermelo-Fraenkel (ZF) Symbolic manipulation Undergraduate-level course

## References

1. 1.
Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts and Monographs in Computer Science. Springer, New York (1990)
2. 2.
Halmos, P.R.: Naive Set Theory. Undergraduate Texts in Mathematics. Springer, New York (1974)
3. 3.
Hodel, R.E.: An Introduction to Mathematical Logic. Dover Publications Inc., New York (2013)Google Scholar
4. 4.
Hrbacek, K., Jech, T.J.: Introduction to Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 220, 3rd edn. M. Dekker, New York (1999). Rev. and expanded edition
5. 5.
Hsiang, J.: Refutational theorem proving using term-rewriting systems. Artif. Intell. 25(3), 255–300 (1985)
6. 6.
Jech, T.J.: Set Theory. Pure and Applied Mathematics, a Series of Monographs and Textbooks, vol. 79. Academic Press, New York (1978)
7. 7.
Kunen, K.: Set Theory. Studies in Logic, vol. 34. College Publications, London (2013). Revised edition
8. 8.
Meseguer, J.: General logics. In: Logic Colloquium 1987: Proceedings. Studies in Logic and the Foundations of Mathematics, 1st edn., vol. 129, pp. 275–330. Elsevier, Granada, August 1989Google Scholar
9. 9.
Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)
10. 10.
Rocha, C.: The formal system of Dijkstra and Scholten. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 580–597. Springer, Cham (2015). doi:
11. 11.
Rocha, C., Meseguer, J.: A rewriting decision procedure for Dijkstra-Scholten’s syllogistic logic with complements. Revista Colombiana de Computación 8(2), 101–130 (2007)Google Scholar
12. 12.
Rocha, C., Meseguer, J.: Theorem proving modulo based on boolean equational procedures. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS 2008. LNCS, vol. 4988, pp. 337–351. Springer, Heidelberg (2008). doi:
13. 13.
Tourlakis, G.J.: Lectures in Logic and Set Theory. Cambridge Studies in Advanced Mathematics, vol. 82–83. Cambridge University Press, Cambridge (2003)

© Springer International Publishing AG 2017

## Authors and Affiliations

• Ernesto Acosta
• 1
• Bernarda Aldana
• 1
• Jaime Bohórquez
• 1
• Camilo Rocha
• 2
Email author
1. 1.Escuela Colombiana de Ingeniería Julio GaravitoBogotáColombia