Advertisement

Data Fusion Applied to Biometric Identification – A Review

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 735)

Abstract

There is a growing interest in data fusion oriented to identification and authentication from biometric traits and physiological signals, because of its capacity for combining multiple sources and multimodal analysis allows improving the performance of these systems. Thus, we considered necessary make an analytical review on this domain. This paper summarizes the state of the art of the data fusion oriented to biometric authentication and identification, exploring its techniques, benefits, advantages, disadvantages, and challenges.

Keywords

Biometric Data fusion Multimodal systems Physiological signals Signal processing 

Notes

Acknowledgments

This work was supported by the Doctoral thesis “Data fusion model oriented to information quality” at the “Universidad Nacional of Colombia”.

References

  1. 1.
    Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: A new multi-level approach to EEG based human authentication using eye blinking. Pattern Recognit. Lett., 1–10 (2015)Google Scholar
  2. 2.
    Ferdowsi, S., Abolghasemi, V., Sanei, S.: A new informed tensor factorization approach to EEG–fMRI fusion. J. Neurosci. Methods 254, 27–35 (2015)CrossRefGoogle Scholar
  3. 3.
    Yeom, S.-K., Suk, H.-I., Lee, S.-W.: Person authentication from neural activity of face-specific visual self-representation. Pattern Recognit. 46(4), 1159–1169 (2013)CrossRefGoogle Scholar
  4. 4.
    Molla, M.K.I., Rabiul Islam, M., Tanaka, T., Rutkowski, T.M.: Artifact suppression from EEG signals using data adaptive time domain filtering. Neurocomputing 97, 297–308 (2012)CrossRefGoogle Scholar
  5. 5.
    Campisi, P., La Rocca, D.: Brain waves for automatic biometric-based user recognition. IEEE Trans. Inf. Forensics Secur. 9(5), 782–800 (2014)CrossRefGoogle Scholar
  6. 6.
    O’Regan, S., Marnane, W.: Multimodal detection of head-movement artefacts in EEG. J. Neurosci. Methods 218(1), 110–120 (2013)CrossRefGoogle Scholar
  7. 7.
    Al-Hudhud, G., Abdulaziz Alzamel, M., Alattas, E., Alwabil, A.: Using brain signals patterns for biometric identity verification systems. Comput. Human Behav. 31, 224–229 (2014)CrossRefGoogle Scholar
  8. 8.
    Belgacem, N., Fournier, R., Nait-Ali, A., Bereksi-Reguig, F.: A novel biometric authentication approach using ECG and EMG signals. J. Med. Eng. Technol. 39(4), 226–238 (2015)CrossRefGoogle Scholar
  9. 9.
    Pal, S., Mitra, M.: Increasing the accuracy of ECG based biometric analysis by data modelling. Meas. J. Int. Meas. Confed. 45(7), 1927–1932 (2012)CrossRefGoogle Scholar
  10. 10.
    Tseng, K.K., Luo, J., Hegarty, R., Wang, W., Haiting, D.: Sparse matrix for ECG identification with two-lead features. Sci. World J. 2015 (2015)Google Scholar
  11. 11.
    Luz, E.J.D.S., Menotti, D., Schwartz, W.R.: Evaluating the use of ECG signal in low frequencies as a biometry. Expert Syst. Appl. 41(5), 2309–2315 (2014)CrossRefGoogle Scholar
  12. 12.
    Jekova, I., Bortolan, G.: Personal Verification/Identification via Analysis of the Peripheral ECG Leads: Influence of the Personal Health Status on the Accuracy, vol. 2015 (2015)Google Scholar
  13. 13.
    Wahabi, S., Member, S., Pouryayevali, S., Member, S.: On evaluating ECG biometric systems: session-dependence and body posture 9(11), 2002–2013 (2014)Google Scholar
  14. 14.
    Gargiulo, F., Fratini, A., Sansone, M., Sansone, C.: Subject identification via ECG fiducial-based systems: Influence of the type of QT interval correction. Comput. Methods Programs Biomed. 121(3), 127–136 (2015)CrossRefGoogle Scholar
  15. 15.
    Singh, Y.N.: Human recognition using fisher’s discriminant analysis of heartbeat interval features and ECG morphology. Neurocomputing 167, 322–335 (2015)CrossRefGoogle Scholar
  16. 16.
    Lourenço, A., Silva, H., Fred, A.: Unveiling the biometric potential of finger-based ECG signals. Comput. Intell. Neurosci. 2011, 1–8 (2011)CrossRefGoogle Scholar
  17. 17.
    Bugdol, M.D., Mitas, A.W.: Multimodal biometric system combining ECG and sound signals. Pattern Recognit. Lett. 38(1), 107–112 (2014)CrossRefGoogle Scholar
  18. 18.
    Gao, G., Zhang, L., Yang, J., Zhang, L., Zhang, D.: Reconstruction based finger-knuckle-print. IEEE Trans. Image Process. 22(12), 5050–5062 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, L., Zhang, L., Zhang, D., Zhu, H.: Online finger-knuckle-print verification for personal authentication. Pattern Recognit. 43(7), 2560–2571 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Singh, Y.N., Singh, S.K., Gupta, P.: Fusion of electrocardiogram with unobtrusive biometrics: An efficient individual authentication system. Pattern Recognit. Lett. 33(14), 1932–1941 (2012)CrossRefGoogle Scholar
  21. 21.
    de Mira, J., Neto, H.V., Neves, E.B., Schneider, F.K.: Biometric-oriented iris identification based on mathematical morphology. J. Signal Process. Syst. 80(2), 181–195 (2015)CrossRefGoogle Scholar
  22. 22.
    Alvarez-Betancourt, Y., Garcia-Silvente, M.: A keypoints-based feature extraction method for iris recognition under variable image quality conditions. Knowledge-Based Syst. 92, 169–182 (2016)CrossRefGoogle Scholar
  23. 23.
    Wang, Q., Zhang, X., Li, M., Dong, X., Zhou, Q., Yin, Y.: Adaboost and multi-orientation 2D Gabor-based noisy iris recognition. Pattern Recognit. Lett. 33(8), 978–983 (2012)CrossRefGoogle Scholar
  24. 24.
    Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: Biometric authentication based on PCG and ECG signals: present status and future directions. Signal, Image Video Process. 8(4), 739–751 (2014)CrossRefGoogle Scholar
  25. 25.
    Poursaberi, A., Noubari, H., Gavrilova, M., Yanushkevich, S.N.: Gauss–Laguerre wavelet textural feature fusion with geometrical information for facial expression identification. EURASIP J. Image Video Process. 2012(1), 17 (2012)CrossRefGoogle Scholar
  26. 26.
    Travieso, C.M., Del Pozo-Banos, M., Alonso, J.B.: Fused intra-bimodal face verification approach based on Scale-Invariant Feature Transform and a vocabulary tree. Pattern Recognit. Lett. 36(1), 254–260 (2014)CrossRefGoogle Scholar
  27. 27.
    Li, A., Shan, S., Chen, X., Gao, W.: Cross-pose face recognition based on partial least squares. Pattern Recognit. Lett. 32(15), 1948–1955 (2011)CrossRefGoogle Scholar
  28. 28.
    Raghavendra, R., Dorizzi, B., Rao, A., Hemantha Kumar, G.: Particle swarm optimization based fusion of near infrared and visible images for improved face verification. Pattern Recognit. 44(2), 401–411 (2011)CrossRefGoogle Scholar
  29. 29.
    Li, M., et al.: Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 369–380 (2010)CrossRefGoogle Scholar
  30. 30.
    Beritelli, F., Serrano, S.: Biometric identification based on frequency analysis of cardiac sounds. IEEE Trans. Inf. Forensics Secur. 2(3), 596–604 (2007)CrossRefGoogle Scholar
  31. 31.
    Klonovs, J., Petersen, C., Olesen, H., Hammershoj, A.: ID proof on the go: development of a mobile EEG-based biometric authentication system. IEEE Veh. Technol. Mag. 8(1), 81–89 (2013)CrossRefGoogle Scholar
  32. 32.
    Xu, Y., Fan, Z., Qiu, M., Zhang, D., Yang, J.Y.: A sparse representation method of bimodal biometrics and palmprint recognition experiments. Neurocomputing 103, 164–171 (2013)CrossRefGoogle Scholar
  33. 33.
    Dai, J., Zhou, J., Member, S.: Multifeature-based high-resolution palmprint recognition 33(5), 945–957 (2011)Google Scholar
  34. 34.
    Bhavsar, A.A., Kshirsagar, V.: Face and palmprint multi-modal biometric recognition based on feature level fusion abstract 3(2), 368–372 (2014)Google Scholar
  35. 35.
    Park, U., Jillela, R.R., Ross, A., Jain, A.K.: Periocular biometrics in the visible spectrum. IEEE Trans. Inf. Forensics Secur. 6(1), 96–106 (2011)CrossRefGoogle Scholar
  36. 36.
    Eskandari, M., Toygar, Ö., Demirel, H.: Feature extractor selection for face-iris multimodal recognition. Signal Image Video Process. 8(6), 1189–1198 (2014)CrossRefGoogle Scholar
  37. 37.
    Liau, H.F., Isa, D.: Feature selection for support vector machine-based face-iris multimodal biometric system. Expert Syst. Appl. 38(9), 11105–11111 (2011)CrossRefGoogle Scholar
  38. 38.
    Eskandari, M., Toygar, Ö.: Selection of optimized features and weights on face-iris fusion using distance images. Comput. Vis. Image Underst. 137, 63–75 (2014)CrossRefGoogle Scholar
  39. 39.
    Benaliouche, H., Touahria, M.: Comparative study of multimodal biometric recognition by fusion of iris and fingerprint. Sci. World J. 2014 (2014)Google Scholar
  40. 40.
    Nanni, L., Lumini, A., Ferrara, M., Cappelli, R.: Combining biometric matchers by means of machine learning and statistical approaches. Neurocomputing 149(PB), 526–535 (2015)CrossRefGoogle Scholar
  41. 41.
    Murillo-Escobar, M.A., Cruz-Hernández, C., Abundiz-Pérez, F., López-Gutiérrez, R.M.: A robust embedded biometric authentication system based on fingerprint and chaotic encryption. Expert Syst. Appl. 42(21), 8198–8211 (2015)CrossRefGoogle Scholar
  42. 42.
    Martinez-Diaz, M., Fierrez, J., Galbally, J., Ortega-Garcia, J.: An evaluation of indirect attacks and countermeasures in fingerprint verification systems. Pattern Recognit. Lett. 32(12), 1643–1651 (2011)CrossRefGoogle Scholar
  43. 43.
    Ahmadian, K., Gavrilova, M.: A multi-modal approach for high-dimensional feature recognition. User Model. User-Adapt. Interact. 29(2), 123–130 (2013)Google Scholar
  44. 44.
    Zhang, D., Liu, Z., Yan, J.: Dynamic tongueprint: a novel biometric identifier. Pattern Recognit. 43(3), 1071–1082 (2010)CrossRefzbMATHGoogle Scholar
  45. 45.
    Travieso, C.M., Zhang, J., Miller, P., Alonso, J.B., Ferrer, M.A.: Bimodal biometric verification based on face and lips. Neurocomputing 74(14–15), 2407–2410 (2011)CrossRefGoogle Scholar
  46. 46.
    Xue, Z., Ming, D., Song, W., Wan, B., Jin, S.: Infrared gait recognition based on wavelet transform and support vector machine. Pattern Recognit. 43(8), 2904–2910 (2010)CrossRefzbMATHGoogle Scholar
  47. 47.
    Odinaka, I., O’Sullivan, J.A., Sirevaag, E.J., Rohrbaugh, J.W.: Cardiovascular biometrics: Combining mechanical and electrical signals. IEEE Trans. Inf. Forensics Secur. 10(1), 16–27 (2015)CrossRefGoogle Scholar
  48. 48.
    Crihalmeanu, S., Ross, A.: Multispectral scleral patterns for ocular biometric recognition. Pattern Recognit. Lett. 33(14), 1860–1869 (2012)CrossRefGoogle Scholar
  49. 49.
    Chin, Y.J., Ong, T.S., Teoh, A.B.J., Goh, K.O.M.: Integrated biometrics template protection technique based on fingerprint and palmprint feature-level fusion. Inf. Fusion 18(1), 161–174 (2014)CrossRefGoogle Scholar
  50. 50.
    Hang, L.W., Hong, C.Y., Yen, C.W., Chang, D.J., Nagurka, M.L.: Gait verification using knee acceleration signals. Expert Syst. Appl. 38(12), 14550–14554 (2011)CrossRefGoogle Scholar
  51. 51.
    Yuan, L., Mu, Z.C.: Ear recognition based on local information fusion. Pattern Recognit. Lett. 33(2), 182–190 (2012)CrossRefGoogle Scholar
  52. 52.
    Rigas, I., Abdulin, E., Komogortsev, O.: Towards a multi-source fusion approach for eye movement-driven recognition. Inf. Fusion, 1–13 (2015)Google Scholar
  53. 53.
    Chen, M., et al.: Laser doppler vibrometry measures of physiological function: Evaluation of biometric capabilities. IEEE Trans. Inf. Forensics Secur. 5(3), 449–460 (2010)CrossRefGoogle Scholar
  54. 54.
    Song, W., Kim, T., Kim, H.C., Choi, J.H., Kong, H.-J., Lee, S.-R.: A finger-vein verification system using mean curvature. Pattern Recognit. Lett. 32(11), 1541–1547 (2011)CrossRefGoogle Scholar
  55. 55.
    Wang, J.-C., Wang, C.-Y., Chin, Y.-H., Liu, Y.-T., Chen, E.-T., Chang, P.-C.: Spectral-temporal receptive fields and MFCC balanced feature extraction for robust speaker recognition. Multimed. Tools Appl. 76(3), 4055–4068 (2017)CrossRefGoogle Scholar
  56. 56.
    Lee, A., Kim, Y.: Photoplethysmography as a form of biometric authentication. In: 2015 IEEE SENSORS, pp. 1–2 (2015)Google Scholar
  57. 57.
    Sidek, K.A., Khalil, I., Jelinek, H.F.: ECG biometric with abnormal cardiac conditions in remote monitoring system. IEEE Trans. Syst. Man Cybern. 44(11), 1498–1509 (2014)CrossRefGoogle Scholar
  58. 58.
    Sengottuvelan, P.: Analysis of living and dead finger impression identification for biometric applications. Comput. Intell. (c), 471–475 (2007)Google Scholar
  59. 59.
    Su, F., Xia, L., Cai, A., Ma, J.: A dual-biometric-modality identification system based on fingerprint and EEG. In: IEEE 4th International Conference on Biometrics Theory, Applications and Systems, BTAS 2010, pp. 3–8 (2010)Google Scholar
  60. 60.
    Kumar, S.B.B.: Analysis of phonocardiogram signal for biometric identification system (c), 2–5 (2015)Google Scholar
  61. 61.
    Sanjeeva Reddy, M., Narasimha, B., Suresh, E., Subba Rao, K.: Analysis of EOG signals using wavelet transform for detecting eye blinks. In: 2010 International Conference on Wireless Communications & Signal Processing, WCSP 2010, pp. 1–3 (2010)Google Scholar
  62. 62.
    Punsawad, Y., Wongsawat, Y., Parnichkun, M.: Hybrid EEG-EOG brain-computer interface system for practical machine control. In: 2010 Annual International Conference of the IEEE Engineering in Medicine Biology Society, EMBC 2010, pp. 1360–1363 (2010)Google Scholar
  63. 63.
    Woodard, D.L., Flynn, P.J.: Finger surface as a biometric identifier. Comput. Vis. Image Underst. 100(3), 357–384 (2005)CrossRefGoogle Scholar
  64. 64.
    Belgacem, N., Fournier, R., Nait-Ali, A., Bereksi-Reguig, F.: A novel biometric authentication approach using ECG and EMG signals. J. Med. Eng. Technol. 39(4), 226–238 (2015)CrossRefGoogle Scholar
  65. 65.
    Polikar, R., et al.: An ensemble based data fusion approach for early diagnosis of Alzheimer’s disease. Inf. Fusion 9(1), 83–95 (2008)CrossRefGoogle Scholar
  66. 66.
    Liu, Y., Hatzinakos, D., Member, S.: Earprint : transient evoked otoacoustic emission for biometrics 9(12), 2291–2301 (2014)Google Scholar
  67. 67.
    Zhao, Z., Yang, L.: ECG identification based on Matching Pursuit. In: 2011 4th International Conference on Biomedical Engineering and Informatics, pp. 721–724 (2011)Google Scholar
  68. 68.
    Annapurani, K., Sadiq, M.A.K., Malathy, C.: Fusion of shape of the ear and tragus – a unique feature extraction method for ear authentication system. Expert Syst. Appl. 42(1), 649–656 (2015)CrossRefGoogle Scholar
  69. 69.
    Wübbeler, G., Stavridis, M., Kreiseler, D., Bousseljot, R.D., Elster, C.: Verification of humans using the electrocardiogram. Pattern Recognit. Lett. 28, 1172–1175 (2007)CrossRefGoogle Scholar
  70. 70.
    Fridman, L., et al.: Multi-modal decision fusion for continuous authentication. Comput. Electr. Eng. 41(C), 142–156 (2015)CrossRefGoogle Scholar
  71. 71.
    Tao, Q., Veldhuis, R.: Biometric authentication system on mobile personal devices. IEEE Trans. Instrum. Meas. 59(4), 763–773 (2010)CrossRefGoogle Scholar
  72. 72.
    Ozkaya, N.: Metacarpophalangeal joint patterns based personal identification system. Appl. Soft Comput. 37, 288–295 (2015)CrossRefGoogle Scholar
  73. 73.
    O’Regan, S., Marnane, W.: Multimodal detection of head-movement artefacts in EEG. J. Neurosci. Methods 218(1), 110–120 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institución Universitaria Salazar y HerreraMedellínColombia
  2. 2.Universidad Nacional de ColombiaMedellínColombia

Personalised recommendations