Analysis of Motor Imaginary BCI Within Multi-environment Scenarios Using a Mixture of Classifiers

  • M. Ortega-Adarme
  • M. Moreno-Revelo
  • D. H. Peluffo-Ordoñez
  • D. Marín Castrillon
  • A. E. Castro-Ospina
  • M. A. BecerraEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 735)


Brain-computer interface (BCI) is a system that provides communication between human beings and machines through an analysis of human brain neural activity. Several studies on BCI systems have been carried out in controlled environments, however, a functional BCI should be able to achieve an adequate performance in real environments. This paper presents a comparative study on alternative classification options to analyze motor imaginary BCI within multi-environment real scenarios based on mixtures of classifiers. The proposed methodology is as follows: The imaginary movement detection is carried out by means of feature extraction and classification, in the first stage; feature set is obtained from wavelet transform, empirical mode decomposition, entropy, variance and rates between minimum and maximum, in the second stage, where several classifier combinations are applied. The system is validated using a database, which was constructed using the Emotiv Epoc+ with 14 channels of electroencephalography (EEG) signals. These were acquired from three subject in 3 different environments with the presence and absence of disturbances. According to the different effects of the disturbances analyzed in the three environments, the performance of the mixture of classifiers presented better results when compared to the individual classifiers, making it possible to provide guidelines for choosing the appropriate classification algorithm to incorporate into a BCI system.


Brain-computer interface Environments Mixture of classifiers Signal processing 


  1. 1.
    Nicolas, L., Gomez, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)CrossRefGoogle Scholar
  2. 2.
    Brumberg, J., Nieto, A., Kennedy, P., Guenther, F.: Brain–computer interfaces for speech communication. Speech Commun. 52(4), 367–379 (2010)CrossRefGoogle Scholar
  3. 3.
    Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Schalk, G., Oriolo, G., Cherubini, A., Marciani, M., Babiloni, F.: Non-invasive brain–computer interface system: towards its application as assistive technology. Brain Res. Bull. 75(6), 796–803 (2008)CrossRefGoogle Scholar
  4. 4.
    Dobkin, B.H.: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation. J. Physiol. 579(3), 637–642 (2007)CrossRefGoogle Scholar
  5. 5.
    Lalor, E.C., Kelly, S.P., Finucane, C., Burke, R., Smith, R., Reilly, R.B., Mcdarby, G.: Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J. Appl. Sig. Process. 2005, 3156–3164 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    McCane, L.M., Sellers, E.W., Mcfarland, D.J., Mak, J.N., Carmack, C.S., Zeitlin, D., Vaughan, T.M.: Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 15(3–4), 207–215 (2014)CrossRefGoogle Scholar
  7. 7.
    López, E., Tufiño L.X.: Caracterización de señales y reconocimiento de patrones para la clasificación de color obtenidos por medio del EEG analizando potenciales visuales evocados, México (2016)Google Scholar
  8. 8.
    Khalid, M.B., Rao, N.I., Rizwan-i-Haque, I., Munir, S., Tahir, F.: Towards a brain computer interface using wavelet transform with averaged and time segmented adapted wavelets. In: 2nd International Conference on Computer, Control and Communication, pp. 1–4. IEEE (2009)Google Scholar
  9. 9.
    Ulaş, Ç.: Incorporation of a language model into a brain computer interface based speller. Doctoral dissertation, Sabancı University (2013)Google Scholar
  10. 10.
    Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), 1–23 (2007)CrossRefGoogle Scholar
  11. 11.
    Quitadamo, L.R., Cavrini, F., Sbernini, L., Riillo, F., Bianchi, L., Seri, S., Saggio, G.: Support vector machines to detect physiological patterns for EEG and EMG-based human–computer interaction: a review. J. Neural Eng. 14(1), 1–27 (2017)CrossRefGoogle Scholar
  12. 12.
    Schettini, F., Riccio, A., Simione, L., Liberati, G., Caruso, M., Frasca, V., Mattia, D.: Assistive device with conventional, alternative, and brain-computer interface inputs to enhance interaction with the environment for people with amyotrophic lateral sclerosis: a feasibility and usability study. Arch. Phys. Med. Rehabil. 96(3), S46–S53 (2015)CrossRefGoogle Scholar
  13. 13.
    Heo, J., Baek, H.J., Hong, S., Chang, M.H., Lee, J.S., Park, K.S.: Music and natural sounds in an auditory steady-state response based brain–computer interface to increase user acceptance. Comput. Biol. Med. 84, 45–52 (2017)CrossRefGoogle Scholar
  14. 14.
    Carabalona, R., Grossi, F., Tessadri, A., Castiglioni, P., Caracciolo, A., de Munari, I.: Light on! Real world evaluation of a P300-based brain–computer interface (BCI) for environment control in a smart home. Ergonomics 55(5), 552–563 (2012)CrossRefGoogle Scholar
  15. 15.
    Jaramillo, A., Acosta, D.F., Ochoa, J.F.: Extracción de características frecuenciales en registros EEG a partir de la transformada wavelet. Revista de investigaciones Universidad del Quindio, 27(2) (2015)Google Scholar
  16. 16.
    Marın, D.M., Restrepo, S., Areiza, H.J., Castro, A.E., Duque, L.: Exploratory analysis of motor imagery local database for BCI systems. In: Congreso Internacional de Ciencias Básicas e Ingeniería (2016)Google Scholar
  17. 17.
    Tolwinski, S.: The Hilbert transform and empirical mode decomposition as tools for data analysis. University of Arizona, Tucson (2007)Google Scholar
  18. 18.
    Villazana, S., Montilla, G., Seijas, C., Caralli, A., Eblen, A.: Clasificación de señales electroencefalográficas utilizando entrenamiento cruzado de máquinas de vectores de soporte. Revista Ingeniería UC, 22(2) (2015)Google Scholar
  19. 19.
    Sheather, S.J., Marron, S.J., Jones, M.C.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Campo, J.P.: Diseño de un nuevo clasificador supervisado para minera de datos. Doctoral dissertation, Master’s thesis, Complutense University, Madrid (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Ortega-Adarme
    • 1
  • M. Moreno-Revelo
    • 1
  • D. H. Peluffo-Ordoñez
    • 2
  • D. Marín Castrillon
    • 3
  • A. E. Castro-Ospina
    • 3
  • M. A. Becerra
    • 4
    Email author
  1. 1.Universidad de NariñoPastoColombia
  2. 2.Universidad Técnica del NorteIbarraEcuador
  3. 3.Instituto Tecnológico MetropolitanoMedellínColombia
  4. 4.Institución Universitaria Salazar y HerreraMedellínColombia

Personalised recommendations