Abstract
Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases.
Keywords
- Machine learning
- Forecasting
- Dengue
- Chikungunya
- Kernel Ridge regression
- Gaussian Processes
This is a preview of subscription content, access via your institution.
Buying options








References
Morbidity prediction github repository (2017). https://github.com/williamcaicedo/morbidityPrediction. Accessed 25 Mar 2017
Althouse, B.M., Ng, Y.Y., Cummings, D.A.T.: Prediction of dengue incidence using search query surveillance. PLoS Negl. Trop. Dis. 5(8), 1–7 (2011). http://dx.doi.org/10.1371
Caicedo-Torres, W., Payares, F.: A machine learning model for occupancy rates and demand forecasting in the hospitality industry. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS, vol. 10022, pp. 201–211. Springer, Cham (2016). doi:10.1007/978-3-319-47955-2_17
Cawley, G.C., Talbot, N.L.C.: Reduced rank kernel ridge regression. Neural Process. Lett. 16(3), 293–302 (2002). http://dx.doi.org/10.1023/A: 1021798002258
Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. J. Mach. Learn. Res. 6, 1019–1041 (2005)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). http://dx.doi.org/10.1007/BF00994018
Cruz, J.A., Wishart, D.S.: Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–77 (2006). https://era.library.ualberta.ca/files/1v53jx76c/Cancer_Informatics_2_2007_59.pdf
Eastin, M.D., Delmelle, E., Casas, I., Wexler, J., Self, C.: Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in colombia. Am. J. Trop. Med. Hyg. 91(3), 598–610 (2014)
Escobar, L.E., Qiao, H., Peterson, A.T.: Forecasting chikungunya spread in the Americas via data-driven empirical approaches. Parasites Vectors 9(1), 112 (2016). http://dx.doi.org/10.1186/s13071-016-1403-y
Flasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Hladish, T.J., Perkins, T.A., Cummings, D.A., et al.: The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (dengvaxia): a model comparison study. PLoS Med. 13(11), e1002181 (2016)
Gilliland, M., Sglavo, U., Tashman, L.: Business Forecasting: Practical Problems and Solutions. Wiley, Hoboken (2016). http://dx.doi.org/10.1002/9781119244592
Golding, N., Wilson, A.L., Moyes, C.L., Cano, J., Pigott, D.M., Velayudhan, R., Brooker, S.J., Smith, D.L., Hay, S.I., Lindsay, S.W.: Integrating vector control across diseases. BMC Med. 13(1), 249 (2015). http://dx.doi.org/10.1186/s12916-015-0491-4
Hesterberg, T., Choi, N.H., Meier, L., Fraley, C., et al.: Least angle and 1 penalized regression: a review. Stat. Surv. 2, 61–93 (2008)
Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 42(1), 80–86 (2000). http://amstat.tandfonline.com/doi/abs/10.1080/00401706.2000.10485983
Kucharz, E.J., Cebula-Byrska, I.: Chikungunya fever. Eur. J. Intern. Med. 23(4), 325–329 (2012). http://www.sciencedirect.com/science/article/pii/S0953620512000337
Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S.: An investigation of machine learning based prediction systems. J. Syst. Softw. 53(1), 23–29 (2000). http://www.sciencedirect.com/science/article/pii/S0164121200000054
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rasmussen, C.E.: Gaussian Processes in Machine Learning, pp. 63–71. Springer, Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-28650-9_4
Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006). 2(3), 4
Robert, C.: Machine learning, a probabilistic perspective. CHANCE 27(2), 62–63 (2014). http://dx.doi.org/10.1080/09332480.2014.914768
Rodríguez, J., Correa, C.: Predicción temporal de la epidemia de dengue en colombia: dinámica probabilista de la epidemia. Revista de Salud Pública 11(3), 443–453 (2009). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-00642009000300013&nrm=iso
Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2002)
Silawan, T., Singhasivanon, P., Kaewkungwal, J., Nimmanitya, S., Suwonkerd, W.: Temporal patterns and forecast of dengue infection in Northeastern Thailand. SE Asian J. Trop. Med. Public Health 39(1), 90 (2008)
Simmons, C.P., Farrar, J.J., van Vinh Chau, N., Wills, B.: Dengue. N. Engl. J. Med. 366(15), 1423–1432 (2012). pMID: 22494122. http://dx.doi.org/10.1056/NEJMra1110265
Smalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W.: Status of research and development of vaccines for chikungunya. Vaccine 34(26), 2976–2981 (2016)
Solomon, T., Mallewa, M.: Dengue and other emerging flaviviruses. J. Infect. 42(2), 104–115 (2001). http://www.sciencedirect.com/science/article/pii/S0163445301908023
Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988). http://dx.doi.org/10.1007/BF00115009
Vannice, K.S., Durbin, A., Hombach, J.: Status of vaccine research and development of vaccines for dengue. Vaccine 34(26), 2934–2938 (2016)
Walker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N.: Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the united kingdom. Parasites Vectors 7(1), 382 (2014). http://dx.doi.org/10.1186/1756-3305-7-382
Williams, C.K., Rasmussen, C.E.: Gaussian processes for regression. In: Advances in Neural Information Processing Systems, pp. 514–520 (1996)
World Health Organization: Dengue guidelines for diagnosis, treatment, prevention and control: new edition (2009). http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1
World Health Organization: World health organization - dengue and severe dengue (2009). http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 25 March 2017
World Health Organization: World health organization - chikungunya (2017). http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed 25 March 2017
Yusof, Y., Mustaffa, Z.: Dengue outbreak prediction: a least squares support vector machines approach. Int. J. Comput. Theory Eng. 3(4), 489 (2011)
Acknowledgments
The authors wish to thank the Universidad Tecnológica de Bolívar (Colombia) and Universidad Autónoma de México for their financial support (Grant: TRFCI-1P2016, D. M-G: Programa de Becas Posdoctorales en la UNAM 2016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Caicedo-Torres, W., Montes-Grajales, D., Miranda-Castro, W., Fennix-Agudelo, M., Agudelo-Herrera, N. (2017). Kernel-Based Machine Learning Models for the Prediction of Dengue and Chikungunya Morbidity in Colombia. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-66562-7_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66561-0
Online ISBN: 978-3-319-66562-7
eBook Packages: Computer ScienceComputer Science (R0)