Skip to main content

Architecture for a Colombian Data Cube Using Satellite Imagery for Environmental Applications

Part of the Communications in Computer and Information Science book series (CCIS,volume 735)


SOLAP data cubes are a main tool to help on the processing of satellite imagery. This article presents the work developed for adapting an existing SOLAP Data Cube to the current Colombian Protocol for processing satellite images to analyze deforestation. We studied different technological alternatives to support such protocol and extend the capabilities of the Australian data cube to include the whole analysis process. In this way, it is possible for different institutions to produce and consume information to/from the data cube allowing the standardization of such information. In consequence, an institution can generate new results based on previous information generated for another institution, keeping the associated metadata along the whole process. This paper introduces the defined architecture, a first implementation and the first results obtained by IDEAM, the Colombian official institution responsible for the monitoring of deforestation in the country.


  • SOLAP data cubes
  • Deforestation
  • Data cubes architecture

This work has been developed in collaboration with the IDEAM.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Ariza-Porras, C., et al.: CDCol: a geoscience data cube that meets Colombian needs. In: Solano, A., Ordoñez, H. (eds.) CCC 2017, CCIS, vol. 735, pp. 87–99, Springer, Cham (2017)

    CrossRef  Google Scholar 

  2. Bolton, D.K.: Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using landsat time-series and airborne lidar data. Remote Sens. of Environ. 163, 48–60 (2015). doi:10.1016/j.rse.2015.03.004

    CrossRef  Google Scholar 

  3. Cabrera, E.V.: Protocolo de procesamiento digital de imágenes para la cuantificación de la deforestación en Colombia, Nivel Subnacional Escala gruesa y fina. IDEAM, Bogota, D.C. (2011)

    Google Scholar 

  4. Campbell, J.B.: Introduction to Remote Sensing. CRC Press, Boca Raton (2002)

    Google Scholar 

  5. CDCol.: Memorias II Taller Inter institucional del Cubo de Datos de Colombia, Bogotá (2015)

    Google Scholar 

  6. Colliat, G.: OLAP, relational, and multidimensional database systems. ACM Sigmod Rec. 25(3), 64–69 (1996)

    CrossRef  Google Scholar 

  7. Feddema, J.J.: The importance of land-cover change in simulating future climates. Science 310, 5754 (2005)

    CrossRef  Google Scholar 

  8. Galindo, G.E.: Protocolo de procesamiento digital de imágenes para la cuantificación de la deforestación en Colombia. V 2.0. IDEAM, Bogota (2014)

    Google Scholar 

  9. Google Earth Engine Team: Google Earth Engine: A planetary-scale geospatial analysis platform (2015).

  10. Guo, H.W.: Building up national Earth observing system in China. Int. J. Appl. Earth Obs. Geoinf. 6, 167–176 (2005). doi:10.1016/j.jag.2004.10.007

    CrossRef  Google Scholar 

  11. IDEAM, IAvH, Invemar, SINCHI e IIAP: Estado de la Biodiversidad, de los ecosistemas continentales, marinos, costeros y avances en el conocimiento. Informe del Estado del Medio Ambiente y los Recursos Naturales Renovables (Vol. Tomo 2), Bogotá, D.C (2011)

    Google Scholar 

  12. Innes, J.L.: Forests in environmental protection. In: John, A.H., Owens, N. (eds.) Forests and Forest Plants in Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford, UK (2004)

    Google Scholar 

  13. Ip, A.: Generalized Data Framework Solution Architecture (Draft). Australian Goverment - Geoscience Australia (2015)

    Google Scholar 

  14. Khorram, S.N.: Remote Sensing. Springer, US, Boston, MA (2012)

    CrossRef  Google Scholar 

  15. Ma, Y.W.: Towards building a data-intensive index for big data computing – A case study of remote sensing data processing. Inf. Sci. 319, 171–188 (2015). doi:10.1016/j.ins.2014.10.006

    CrossRef  Google Scholar 

  16. Andina, O.N.F.: Agosto - Septiembre, p. 15. Bosques y Cambio Climático -, Boletín Técnico N (2014)

    Google Scholar 

  17. Rivest, S.E.: SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS J. Photogramm. Remote sens. 60(1), 17–33 (2005)

    CrossRef  Google Scholar 

  18. U.S. Geological Survey: Landsat 7 science data users handbook (1998)

    Google Scholar 

  19. UNESCO: Application of satellite remote sensing to support water resources management in Africa: Results from the TIGER initiative. technical documents in hydrology, 85 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Germán Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bravo, G. et al. (2017). Architecture for a Colombian Data Cube Using Satellite Imagery for Environmental Applications. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66561-0

  • Online ISBN: 978-3-319-66562-7

  • eBook Packages: Computer ScienceComputer Science (R0)