Abstract
SOLAP data cubes are a main tool to help on the processing of satellite imagery. This article presents the work developed for adapting an existing SOLAP Data Cube to the current Colombian Protocol for processing satellite images to analyze deforestation. We studied different technological alternatives to support such protocol and extend the capabilities of the Australian data cube to include the whole analysis process. In this way, it is possible for different institutions to produce and consume information to/from the data cube allowing the standardization of such information. In consequence, an institution can generate new results based on previous information generated for another institution, keeping the associated metadata along the whole process. This paper introduces the defined architecture, a first implementation and the first results obtained by IDEAM, the Colombian official institution responsible for the monitoring of deforestation in the country.
Keywords
- SOLAP data cubes
- Deforestation
- Data cubes architecture
This work has been developed in collaboration with the IDEAM.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ariza-Porras, C., et al.: CDCol: a geoscience data cube that meets Colombian needs. In: Solano, A., Ordoñez, H. (eds.) CCC 2017, CCIS, vol. 735, pp. 87–99, Springer, Cham (2017)
Bolton, D.K.: Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using landsat time-series and airborne lidar data. Remote Sens. of Environ. 163, 48–60 (2015). doi:10.1016/j.rse.2015.03.004
Cabrera, E.V.: Protocolo de procesamiento digital de imágenes para la cuantificación de la deforestación en Colombia, Nivel Subnacional Escala gruesa y fina. IDEAM, Bogota, D.C. (2011)
Campbell, J.B.: Introduction to Remote Sensing. CRC Press, Boca Raton (2002)
CDCol.: Memorias II Taller Inter institucional del Cubo de Datos de Colombia, Bogotá (2015)
Colliat, G.: OLAP, relational, and multidimensional database systems. ACM Sigmod Rec. 25(3), 64–69 (1996)
Feddema, J.J.: The importance of land-cover change in simulating future climates. Science 310, 5754 (2005)
Galindo, G.E.: Protocolo de procesamiento digital de imágenes para la cuantificación de la deforestación en Colombia. V 2.0. IDEAM, Bogota (2014)
Google Earth Engine Team: Google Earth Engine: A planetary-scale geospatial analysis platform (2015). https://earthengine.google.com
Guo, H.W.: Building up national Earth observing system in China. Int. J. Appl. Earth Obs. Geoinf. 6, 167–176 (2005). doi:10.1016/j.jag.2004.10.007
IDEAM, IAvH, Invemar, SINCHI e IIAP: Estado de la Biodiversidad, de los ecosistemas continentales, marinos, costeros y avances en el conocimiento. Informe del Estado del Medio Ambiente y los Recursos Naturales Renovables (Vol. Tomo 2), Bogotá, D.C (2011)
Innes, J.L.: Forests in environmental protection. In: John, A.H., Owens, N. (eds.) Forests and Forest Plants in Encyclopedia of Life Support Systems (EOLSS). Eolss Publishers, Oxford, UK (2004)
Ip, A.: Generalized Data Framework Solution Architecture (Draft). Australian Goverment - Geoscience Australia (2015)
Khorram, S.N.: Remote Sensing. Springer, US, Boston, MA (2012)
Ma, Y.W.: Towards building a data-intensive index for big data computing – A case study of remote sensing data processing. Inf. Sci. 319, 171–188 (2015). doi:10.1016/j.ins.2014.10.006
Andina, O.N.F.: Agosto - Septiembre, p. 15. Bosques y Cambio Climático -, Boletín Técnico N (2014)
Rivest, S.E.: SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS J. Photogramm. Remote sens. 60(1), 17–33 (2005)
U.S. Geological Survey: Landsat 7 science data users handbook (1998)
UNESCO: Application of satellite remote sensing to support water resources management in Africa: Results from the TIGER initiative. technical documents in hydrology, 85 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bravo, G. et al. (2017). Architecture for a Colombian Data Cube Using Satellite Imagery for Environmental Applications. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-66562-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66561-0
Online ISBN: 978-3-319-66562-7
eBook Packages: Computer ScienceComputer Science (R0)