Skip to main content

Beneficial Effects of Bacterial Endophytes on Forest Tree Species

  • Chapter
  • First Online:
Endophytes: Crop Productivity and Protection

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 16))

Abstract

Since their discovery, beneficial bacteria living inside the plant tissues (known as bacterial endophytes) have been studied widely in agricultural crop species. But their ecology and effects on tree species in a forest ecosystem could be very different yet intriguing. In this chapter, studies highlighting the isolation of bacterial endophytes, re-inoculation and detection of the endophytic population in the host tree, and benefits provided to the host tree through direct and indirect mechanisms have been reviewed. Important tree species including those belonging to the genus Pinus, Populus, and Picea have been reported widely to harbor bacterial endophytes belonging to the genus Bacillus, Paenibacillus, and Pseudomonas and possibly obtain benefits like nitrogen fixation and increased biomass production from them. Nitrogen-fixing bacterial endophytes are the most commonly studied beneficial microbes of forest tree species, and thus have been reviewed in detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand R, Chanway C (2013a) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fertil Soils 49:235–239. doi:10.1007/s00374-012-0735-9

    Article  CAS  Google Scholar 

  • Anand R, Chanway CP (2013b) Detection of GFP-labeled Paenibacillus polymyxa in auto fluorescing pine seedling tissues. Biol Fertil Soils 49:111–118. doi:10.1007/s00374-012-0727-9

    Article  CAS  Google Scholar 

  • Anand R, Chanway CP (2013c) nif gene sequence and arrangement in the endophytic diazotroph Paenibacillus polymyxa strain P2b-2R. Biol Fertil Soils 49:965–970. doi:10.1007/s00374-013-0793-7

    Article  CAS  Google Scholar 

  • Anand R, Grayston S, Chanway CP (2013) N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374. doi:10.1007/s00248-013-0196-1

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Paul L, Chanway C (2006) Research on endophytic bacteria: recent advances with forest trees. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, Part 1. Springer-Verlag, Berlin, Heidelberg, pp 89–106. doi:10.1007/3-540-33526-9_6

  • Anwar N, Abaydulla G, Zayadan B, Abdurahman M, Hamood B, Erkin R, Ismayil N, Rozahon M, Mamtimin H, Rahman E (2016) Pseudomonas populi sp. nov., an endophytic bacterium isolated from Populus euphratica. Int J Syst Evol Microbiol 66:1419–1425. doi:10.1099/ijsem.0.000896

    Article  CAS  Google Scholar 

  • Appel DM, Kurdyla T (1992) Intravascular injection with propiconazole in live oak for oak wilt control. Plant Dis 76:1120–1124

    Article  CAS  Google Scholar 

  • Bal A, Chanway CP (2012a) Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90:891–896. doi:10.1139/b2012-044

    Article  CAS  Google Scholar 

  • Bal A, Chanway CP (2012b) 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biol Fertil Soils 48:967–971. doi:10.1007/s00374-012-0699-9

    Article  Google Scholar 

  • Bal A, Anand R, Berge O, Chanway C (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813. doi:10.1139/x2012-023

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491. doi:10.1007/s003740050027

    Article  Google Scholar 

  • Bent E, Chanway CP (2002) Potential for misidentification of a spore-forming Paenibacillus polymyxa isolate as an endophyte by using culture-based methods. Appl Environ Microbiol 68:4650–4652. doi:10.1128/AEM.68.9.4650-4652.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak SA (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800. doi:10.1139/w01-080

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117. doi:10.1007/BF02187441

    Article  Google Scholar 

  • Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. doi:10.1007/s00253-004-1696-1

    Article  CAS  PubMed  Google Scholar 

  • Brooks DS, Gonzalez CF, Appel DN, Filer T (1994) Evaluation of endophytic bacteria as potential biological-control agents for Oak Wilt. Biol Control 4:373–381. doi:10.1006/bcon.1994.1047

    Article  Google Scholar 

  • Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345. doi:10.1016/j.femsle.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333. doi:10.3389/fmicb.2014.00333

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108:23–31. doi:10.1007/BF02370096

    Article  Google Scholar 

  • Chanway CP (1996) Endophytes: they’re not just fungi. Can J Bot 74:321–322. doi:10.1139/b96-040

    Article  Google Scholar 

  • Chanway CP, Holl FB (1993a) Ecotypic specificity of spruce emergence-stimulating Pseudomonas putida. For Sci 39:520–527

    Google Scholar 

  • Chanway CP, Holl FB (1993b) First year field performance of spruce seedlings inoculated with plant growth promoting rhizobacteria. Can J Microbiol 39:1084–1088. doi:10.1139/m93-164

    Article  Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl F (2000) Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manag 133:81–88. doi:10.1016/S0378-1127(99)00300-X

    Article  Google Scholar 

  • Chanway CP, Anand R, Yang H (2014) Nitrogen fixation outside and inside plant tissues. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. InTech, pp 3–23. doi:10.5772/57532

  • Danso SKA (1995) Assessment of biological nitrogen fixation. Fert Res 42:33–41. doi:10.1007/BF00750498

    Article  CAS  Google Scholar 

  • de Bary A (1866) Morphologie und Physiologie Pilze, Flechten, und myxomyceten. Hofmeister’s Handbook of Physiological Botany, vol 2. Leipzig: Verlag Von Wilhelm Engelmann. http://babel.hathitrust.org/cgi/pt?id=hvd.32044053007316. Accessed 27 July 2016

  • Döbereiner J (1961) Nitrogen fixing bacteria of the genus Beijerinckia Drex. in the rhizosphere of sugarcane. Plant Soil 15:211–216. doi:10.1007/BF01400455

    Article  Google Scholar 

  • Döbereiner J (1992) Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciênc Cult 44:310–313

    Google Scholar 

  • Döbereiner J, Alvahydo R (1959) Sóbre a influénciada canade-acucar na occoréncia de “Beijerinckia” no solo II. Influéncia das diversas partes do vegetal. Rev Bras Biol 19:401–412

    Google Scholar 

  • Doty SL (2011) Growth-promoting endophytic fungi of forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, forestry sciences series. Springer, Netherlands, pp 151–156. doi:10.1007/978-94-007-1599-8_9

  • Doty SL, Dosher MR, Singleton GL, Moore AL, Van Aken B, Stettler RF, Strand SE, Gordon MP (2005) Identification of an endophytic Rhizobium in stems of Populus. Symbiosis 39:27–35. https://depts.washington.edu/envaplab/papers/RhizobiumTropiciPopulus.pdf. Accessed 3 Aug 2016

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33. doi:10.1007/BF03179967

    Article  CAS  Google Scholar 

  • Geric B, Rupnik M, Kraigher H (2000) Isolation and identification of mycorrhization helper bacteria in Norway spruce, Picea abies (L.) Karst. Phyton 40:65–70

    Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G et al (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118. doi:10.1016/j.femsec.2003.12.009

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JN, French DW (1980) The transmission of oak wilt. Research Paper NC-185. US Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, USA. http://www.nrs.fs.fed.us/pubs/rp/rp_nc185.pdf. Accessed 7 Aug 2016

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephen MP (1989) Acetobacter diaztrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364. doi:10.1099/00207713-39-3-361

    Article  Google Scholar 

  • Gottel NR, Castro HF, Kerley M et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944. doi:10.1128/AEM.05255-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. doi:10.1139/m97-131

    Article  CAS  Google Scholar 

  • Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fertil Soils 44:155–162. doi:10.1007/s00374-007-0189-7

    Article  Google Scholar 

  • Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees, biology and applications: forestry sciences series, vol 80. Springer Heidelberg, Germany, pp 95–105. doi:10.1007/978-94-007-1599-8_6

  • Kaewkla O, Franco CMM (2010) Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 60:1532–1536. doi:10.1099/ijs.0.016337-0

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Kandel S, Ramos D, Ettl GJ, Kim S-H, Doty SL (2015) Increased biomass of nursery-grown Douglas-fir seedlings upon inoculation with diazotrophic endophytic consortia. Forests 6:3582–3593. doi:10.3390/f6103582

    Article  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609. doi:10.1111/nph.12536

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–233

    Google Scholar 

  • Krugman SL, Jenkinson JL (1974) Pinus L. Pine. In: Schopmeyer CS (tech coord) Seeds of woody plants in the United States. Agriculture handbook 450, US Department of Agriculture, Washington, DC, pp 598–638. http://www.treesearch.fs.fed.us/pubs/32852. Accessed 1 Aug 2016

  • Lotan JE, Critchfield WB (1990) Lodgepole pine (Pinus contorta). In: Burns RM, Honkala BH (tech coords) Silvics of North America, vol 1: Conifers. Agriculture Handbook 654, US Department of Agriculture, Forest Service, Washington, DC, pp 302–312. https://www.na.fs.fed.us/spfo/pubs/silvics_manual/Volume_1/pinus/contorta.htm. Accessed 1 Aug 2016

  • MacDonald W, Hindal D (1981) Life cycle and epidemiology of Ceratocystis. In: Mace ME, Bell AA, Beckman CH (eds) Wilt disease of plants. Academic Press, New York, USA, pp 113–144

    Chapter  Google Scholar 

  • Madmony A, Chernin L, Pleban S, Peleg E, Riov J (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50:209–216. doi:10.1007/BF02931568

    Article  CAS  Google Scholar 

  • Moyes AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehey N, O’Neil J, Frank AC (2016) Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer. New Phytol 210:657–668. doi:10.1111/nph.13850

    Article  CAS  PubMed  Google Scholar 

  • O’Neill GA, Chanway CP, Axelrood PE, Radley RA, Holl FB (1992) Growth response specificity of spruce inoculated with coexistent rhizosphere bacteria. Can J Bot 70:2347–2353. doi:10.1139/b92-294

    Article  Google Scholar 

  • Omay SH, Schmidt WA, Martin P, Bangerth F (1993) Indoleacetic-acid production by the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Can J Microbiol 39:187–192. doi:10.1139/m93-026

    Article  CAS  Google Scholar 

  • Padda KP, Puri A, Chanway CP (2016a) Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings. Biol Fertil Soils 52:377–387. doi:10.1007/s00374-015-1083-3

    Article  CAS  Google Scholar 

  • Padda KP, Puri A, Chanway, CP (2016b) Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study. Botany 94:1209–1217. doi:10.1139/cjb-2016-0075

  • Padda KP, Puri A, Zeng Q, Chanway CP, Wu X (2017) Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of Paenibacillus polymyxa. Botany 95:933–942. doi:10.1139/cjb-2017-0056

  • Parish R, Thomson S (1994) Tree book: learning to recognize trees of British Columbia. Canadian Forest Service, Victoria, Canada. https://www.for.gov.bc.ca/hfd/library/documents/treebook/TreeBook.pdf. Accessed 4 Aug 2016

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201. doi:10.1128/MMBR.64.1.180-201.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirttilä AM (2011) Endophytic bacteria in tree shoot tissues and their effects on host. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees, biology and applications: forestry sciences series, vol 80. Springer, Heidelberg, Germany, pp 139–150. doi:10.1007/978-94-007-1599-8_8

  • Pirttilä AM, Laukkanen H, Pospiech H, Myllylä R, Hohtola A (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077. doi:10.1128/AEM.66.7.3073-3077.2000

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A, Pirttilä A, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312. doi:10.1111/j.0031-9317.2004.00330.x

    Article  PubMed  Google Scholar 

  • Pohjanen J, Koskimäki JJ, Sutela S, Ardanov P, Suorsa M, Niemi K, Sarjala T, Häggman H, Pirttilä AM (2014) Interaction with ectomycorrhizal fungi and endophytic Methylobacterium affects nutrient uptake and growth of pine seedlings in vitro. Tree Physiol 34:993–1005. doi:10.1093/treephys/tpu062

    Article  PubMed  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2015) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 89:210–216. doi:10.1016/j.soilbio.2015.07.012

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016a) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils 52:119–125. doi:10.1007/s00374-015-1051-y

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016b) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129. doi:10.1007/s13199-016-0385-z

    Article  CAS  Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism—biochemical and molecular-genetics. Plant Cell 7:921–934. doi:10.1105/tpc.7.7.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14. doi:10.1139/m81-002

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Mendoza A, Antonia Cruz M, Holguin G, Glick BR, Bashan Y (2006) Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene. FEMS Microbiol Ecol 57:217–225. doi:10.1111/j.1574-6941.2006.00111.x

    Article  CAS  PubMed  Google Scholar 

  • Sabry RS, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc London: Biol Sci 264:341–346. doi:10.1098/rspb.1997.0049

    Article  Google Scholar 

  • Schaefer AL, Lappala CR, Morlen RP, Pelletier DA, Lu TYS, Lankford PK, Harwood CS, Greenberg EP (2013) LuxR- and LuxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Appl Environ Microbiol 79:5745–5752. doi:10.1128/AEM.01417-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Oda Y, Coutinho BG, Pelletier D, Weiburg J, Venturi V, Greenberg EP, Harwood CS (2016) A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides. mBio 7:e01101–16. doi:10.1128/mBio.01101-16

  • Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) Metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant Microbe Interact 22:1032–1037. doi:10.1094/MPMI-22-8-1032

    Article  CAS  PubMed  Google Scholar 

  • Shishido M, Chanway CP (1999) Spruce growth response specificity after treatment with plant growth-promoting Pseudomonads. Can J Bot 77:22–31. doi:10.1139/b98-197

    Google Scholar 

  • Shishido M, Chanway CP (2000) Colonization and growth of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Can J For Res 30:848–854. doi:10.1139/x00-010

    Article  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713. doi:10.1139/m95-097

    Article  CAS  Google Scholar 

  • Shishido M, Massicotte HB, Chanway CP (1996a) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–441. doi:10.1006/anbo.1996.0053

    Article  Google Scholar 

  • Shishido M, Petersen DJ, Massicotte HB, Chanway CP (1996b) Pine and spruce seedling growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strains. FEMS Microbiol EcoI 21:109–119. doi:10.1111/j.1574-6941.1996.tb00338.x

    Article  CAS  Google Scholar 

  • Shishido M, Brevil C, Chanway CP (1999) Endophyic colonization of spruce by plant growth promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196. doi:10.1111/j.1574-6941.1999.tb00610.x

    Article  CAS  Google Scholar 

  • Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Döbereiner J (1991) Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol Lett 77:67–72. doi:10.1111/j.1574-6968.1991.tb04323.x

    Article  CAS  Google Scholar 

  • Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (1996) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, Canada

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30. doi:10.1080/07352680091139169

    Article  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. In: Singh DP, Abhilash PC, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1: Research perspectives. Springer, India, pp 117–143. doi:10.1007/978-81-322-2647-5_7

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from Poplar improves phytoremediation of toluene. Appl Environ Microb 71:8500–8505. doi:10.1128/AEM.71.12.8500-8505.2005

    Article  CAS  Google Scholar 

  • Taghavi A, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757. doi:10.1128/AEM.02239-08

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Puri A, Padda KP, Chanway CP (2017) Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany 95:611–619. doi:10.1139/cjb-2016-0300

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300. doi:10.1128/AEM.71.11.7292-7300.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevet IW, Hollis JP (1948) Bacteria in storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa. Science 313:1596–15604. doi:10.1126/science.1128691

    Article  CAS  PubMed  Google Scholar 

  • Ulrich K, Stauber T, Ewald D (2008a) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tiss Org 93:347–351. doi:10.1007/s11240-008-9367-z

    Article  Google Scholar 

  • Ulrich K, Ulrich A, Ewald D (2008b) Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol Ecol 63:169–180. doi:10.1111/j.1574-6941.2007.00419.x

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418. doi:10.1021/es901997z

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of Pseudomonas putida W619-TCE to reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919. doi:10.1016/j.envpol.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Boulet J, Adriaensen D et al (2012) Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356:217–230. doi:10.1007/s11104-011-0831-x

    Article  CAS  Google Scholar 

  • Xin G, Zhang GY, Kang JW, Staley JT, Doty SL (2009) A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood. Biol Fertil Soils 45:669–674. doi:10.1007/s00374-009-0377-8

    Article  CAS  Google Scholar 

  • Yamada Y, Hoshino K, Ishkawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16 S ribosomal RNA: the elevation of the subgenus Gluconacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251. doi:10.1271/bbb.61.1244

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Puri A, Padda KP, Chanway CP (2016) Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth. Can J For Res 46:816–821. doi:10.1139/cjfr-2015-0456

    Article  CAS  Google Scholar 

  • Yang H, Puri A, Padda KP, Chanway CP (2017) Substrate utilization by endophytic Paenibacillus polymyxa that may facilitate bacterial entrance and survival inside various host plants. FACETS 2:120–130. doi:10.1139/facets-2016-0031

Download references

Acknowledgements

Authors would like to dedicate this work to Late Mr. Darshan K. Puri (1956–2014). You were, are, and always will be an inspirational figure for us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshit Puri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puri, A., Padda, K.P., Chanway, C.P. (2017). Beneficial Effects of Bacterial Endophytes on Forest Tree Species. In: Maheshwari, D., Annapurna, K. (eds) Endophytes: Crop Productivity and Protection. Sustainable Development and Biodiversity, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-66544-3_6

Download citation

Publish with us

Policies and ethics