Three Families of Solutions on \(\mathbb{R}_{>0}\)

  • Martin A. Guest
  • Claus Hertling
Part of the Lecture Notes in Mathematics book series (LNM, volume 2198)


In this chapter we are interested in restrictions to \(\mathbb{R}_{>0}\) of solutions of P III (0, 0, 4, −4), which are related to real solutions (possibly with singularities) on \(\mathbb{R}_{>0}\) of one of the following three differential equations:


  1. [BV89]
    Babbitt, D.G., Varadarajan, V.S.: Local moduli for meromorphic differential equations. Asterisque 169–170, 1–217 (1989)MATHGoogle Scholar
  2. [BJL79]
    Balser, W., Jurkat, W.B., Lutz, D.A.: Birkhoff invariants and Stokes’ multipliers for meromorphic linear differential equations. J. Math. Anal. Appl. 71, 48–94 (1979)CrossRefMATHMathSciNetGoogle Scholar
  3. [BS76]
    Bǎnicǎ, C., Stǎnǎşilǎ, O.: Algebraic Methods in the Global Theory of Complex Spaces. Editura Academiei, Buchurest (1976)MATHGoogle Scholar
  4. [Bo01]
    Boalch, P.: Symplectic manifolds and isomonodromic deformations. Adv. Math. 163, 137–205 (2001)CrossRefMATHMathSciNetGoogle Scholar
  5. [Bo05]
    Boalch, P.: Quasi-hamiltonian geometry of meromorphic connections. Duke Math. J. 139, 369–404 (2007)CrossRefMATHMathSciNetGoogle Scholar
  6. [BI95]
    Bobenko, A.I., Its, A.R.: The Painlevé III equation and the Iwasawa decomposition. Manuscripta Math. 87, 369–377 (1995)CrossRefMATHMathSciNetGoogle Scholar
  7. [BIK04]
    Bolibruch, A., Its, A.R., Kapaev, A.A.: On the Riemann-Hilbert-Birkhoff inverse monodromy problem and the Painlevé equations. Algebra i Analiz 16, 121–162 (2004)MathSciNetGoogle Scholar
  8. [CKS86]
    Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structures. Ann. Math. (2) 123(3), 457–535 (1986)Google Scholar
  9. [CV91]
    Cecotti, S., Vafa, C.: Topological–anti-topological fusion. Nuclear Phys. B 367(2), 359–461 (1991)CrossRefMATHMathSciNetGoogle Scholar
  10. [CV93]
    Cecotti, S., Vafa, C.: On classification of N = 2 supersymmetric theories. Comm. Math. Phys. 158(3), 569–644 (1993)CrossRefMATHMathSciNetGoogle Scholar
  11. [Co99]
    Conte, R. (ed.): The Painlevé property: one century later. CRM Series in Mathematical Physics. Springer, New York (1999).MATHGoogle Scholar
  12. [Do08]
    Dorfmeister, J.: Generalized Weierstraß representations of surfaces. In: Surveys on Geometry and Integrable Systems. Adv. Stud. Pure Math. 51, 55–111 (2008)MATHMathSciNetGoogle Scholar
  13. [DGR10]
    Dorfmeister, J., Guest, M.A., Rossman, W.: The tt structure of the quantum cohomology of \(\mathbb{C}P^{1}\) from the viewpoint of differential geometry. Asian J. Math. 14, 417–438 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. [DPW98]
    Dorfmeister, J., Pedit, F., Wu, H.: Weierstrass type representations of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6, 633–668 (1998)CrossRefMATHMathSciNetGoogle Scholar
  15. [Du93]
    Dubrovin, B.: Geometry and integrability of topological-antitopological fusion. Comm. Math. Phys. 152(3), 539–564 (1993)CrossRefMATHMathSciNetGoogle Scholar
  16. [Du99]
    Dubrovin, B.: Painlevé equations in 2D topological field theories. In: [Co99], pp. 287–412Google Scholar
  17. [FLPP01]
    Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. 146, 507–593 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. [FPT94]
    Ferus, D., Pinkall, U., Timmreck, M.: Constant mean curvature planes with inner rotational symmetry in Euclidean 3-space. Math. Z. 215, 561–568 (1994)CrossRefMATHMathSciNetGoogle Scholar
  19. [FN80]
    Flaschka, H., Newell, A.C.: Monodromy- and spectrum-preserving deformations I. Comm. Math. Phys. 76, 65–116 (1980)CrossRefMATHMathSciNetGoogle Scholar
  20. [FA82]
    Fokas, A.S., Ablowitz, M.J.: On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys. 23, 2033–2042 (1982)CrossRefMATHMathSciNetGoogle Scholar
  21. [FMZ92]
    Fokas, A.S., Mugau, U., Zhou, X.: On the solvability of Painlevé I, III, and IV. Inverse Prob. 8, 757–785 (1992)CrossRefGoogle Scholar
  22. [FIKN06]
    Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Yu.: Painlevé Transcendents: The Riemann-Hilbert Approach. Mathematical Surveys and Monographs, vol. 128. Amer. Math. Soc., Providence (2006)Google Scholar
  23. [GJP01]
    Gordoa, P.R., Joshi, N., Pickering, A.: Mappings preserving locations of movable poles: II. The third and fifth Painlevé equations. Nonlinearity 14, 567–582 (2001)MATHGoogle Scholar
  24. [Gr73]
    Gromak, V.I.: The solutions of Painlevé’s third equation. Differ. Equ. 9, 1599–1600 (1973)MATHGoogle Scholar
  25. [Gr79]
    Gromak, V.I.: Algebraic solutions of the third Painlevé equation. Dokl. Akad. Nauk BSSR 23, 499–502 (1979)MATHMathSciNetGoogle Scholar
  26. [GL79]
    Gromak, V.I., Lukashevich, N.A.: Special classes of solutions of Painlevé equations. Differ. Equ. 18, 317–326 (1980)MATHGoogle Scholar
  27. [GLSh02]
    Gromak, V.I., Laine, I., Shimomura, S.: Painlevé Differential Equations in the Complex Plane. Walter de Gruyter, Berlin (2002)CrossRefMATHGoogle Scholar
  28. [Gu08]
    Guest, M.A.: From Quantum Cohomology to Integrable Systems. Oxford Univ. Press, Oxford (2008)MATHGoogle Scholar
  29. [GL14]
    Guest, M.A., Lin, C.-S.: Nonlinear PDE aspects of the tt equations of Cecotti and Vafa. J. Reine Angew. Math. 689, 1–32 (2014)CrossRefMATHMathSciNetGoogle Scholar
  30. [He03]
    Hertling, C.: tt geometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555, 77–161 (2003)Google Scholar
  31. [HS11]
    Hertling, C., Sabbah, C.: Examples of non-commutative Hodge structures. J. Inst. Math. Jussieu 10(3), 635–674 (2011)CrossRefMATHMathSciNetGoogle Scholar
  32. [HS07]
    Hertling, C., Sevenheck, Ch.: Nilpotent orbits of a generalization of Hodge structures. J. Reine Angew. Math. 609, 23–80 (2007)MATHMathSciNetGoogle Scholar
  33. [HS10]
    Hertling, C., Sevenheck, Ch.: Limits of families of Brieskorn lattices and compactified classifying spaces. Adv. Math. 223, 1155–1224 (2010)CrossRefMATHMathSciNetGoogle Scholar
  34. [Heu09]
    Heu, V.: Stability of rank 2 vector bundles along isomonodromic deformations. Math. Ann. 344, 463–490 (2009)CrossRefMATHMathSciNetGoogle Scholar
  35. [Heu10]
    Heu, V.: Universal isomonodromic deformations of meromorphic rank 2 connections on curves. Ann. Inst. Fourier 60, 515–549 (2010)CrossRefMATHMathSciNetGoogle Scholar
  36. [HL01]
    Hinkkanen, A., Laine, I.: Solutions of modified third Painlevé equation are meromorphic. J. Anal. Math. 85, 323–337 (2001)CrossRefMATHMathSciNetGoogle Scholar
  37. [IS12]
    Inaba, M., Saito, M.-H.: Moduli of unramified irregular singular parabolic connections on a smooth projective curve. Kyoto J. Math. 53, 433–482 (2013)CrossRefMATHMathSciNetGoogle Scholar
  38. [IN11]
    Its, A.R., Niles, D.: On the Riemann-Hilbert-Birkhoff inverse monodromy problem associated with the third Painlevé equation. Lett. Math. Phys. 96, 85–108 (2011)CrossRefMATHMathSciNetGoogle Scholar
  39. [IN86]
    Its, A.R., Novokshenov, V.Yu.: The isomonodromic deformation method in the theory of Painlevé equations. Lecture Notes in Mathematics, vol. 1191. Springer, Berlin (1986)Google Scholar
  40. [IN88]
    Its, A.R., Novokshenov, V.Yu.: On the effective sufficient conditions for solvability of the inverse monodromy problem for the systems of linear ordinary differential equations. Funct. Anal. i Prilozhen. 22(3), 25–36 (1988)MATHMathSciNetGoogle Scholar
  41. [IKShY91]
    Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé. A modern theory of special functions. Aspects of Mathematics, vol. E 16. Vieweg, Braunschweig (1991)Google Scholar
  42. [JM81]
    Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407–448 (1981)CrossRefMATHMathSciNetGoogle Scholar
  43. [Ki88]
    Kitaev, A.V.: The method of isomonodromy deformations and the asymptotics of solution of the “complete” third Painlevé equation. Math. USSR Sb. 62, 421–444 (1988)CrossRefMATHGoogle Scholar
  44. [Ko11]
    Kobayashi, Sh.: Real forms of complex surfaces of constant mean curvature. Trans. AMS 363(4), 1765–1788 (2011)CrossRefMATHMathSciNetGoogle Scholar
  45. [Lu67]
    Lukashevich, N.A.: On the theory of Painlevé’s third equation. Differ. Equ. 3, 994–999 (1967)MATHGoogle Scholar
  46. [Ma83a]
    Malgrange, B.: La classification des connexions irrégulières à une variable. In: Séminaire de’l ENS, Mathématique et Physique, 1979–1982. Progress in Mathematics, vol. 37, pp. 353–379. Birkhäuser, Boston (1983)Google Scholar
  47. [Ma83b]
    Malgrange, B.: Sur les déformations isomonodromiques, I, II. In: Séminaire de’l ENS, Mathématique et Physique, 1979–1982. Progress in Mathematics, vol. 37, pp. 401–438. Birkhäuser, Boston (1983)Google Scholar
  48. [MW98]
    Mansfield, E.L., Webster, H.N.: On one-parameter families of solutions of Painlevé III. Stud. Appl. Math. 101, 321–341 (1998)CrossRefMATHMathSciNetGoogle Scholar
  49. [MMT99]
    Matano, T., Matumiya, A., Takano, K.: On some Hamiltonian structures of Painlevé systems, II. J. Math. Soc. Jpn. 51, 843–866 (1999)CrossRefMATHGoogle Scholar
  50. [Mat97]
    Matumiya, A.: On some Hamiltonian structure of Painlevé systems, III. Kumamoto J. Math. 10, 45–73 (1997)MATHMathSciNetGoogle Scholar
  51. [MTW77]
    McCoy, B.M., Tracy, C.A., Wu, T.T.: Painlevé functions of the third kind. J. Math. Phys. 18(5), 1058–1092 (1977)CrossRefMATHGoogle Scholar
  52. [MCB97]
    Milne, A.E., Clarkson, P.A., Bassom, A.P.: Bäcklund transformations and solution hierarchies for the third Painlevé equation. Stud. Math. Appl. 98, 139–194 (1997)CrossRefMATHMathSciNetGoogle Scholar
  53. [Mi81]
    Miwa, T.: Painlevé property of monodromy preserving deformation equations and the analyticity of τ-functions. Publ. RIMS, Kyoto Univ. 17, 703–712 (1981)Google Scholar
  54. [Mo03]
    Mochizuki, T.: Asymptotic behaviour of tame harmonic bundles and an application to pure twistor \(\mathcal{D}\)-modules, Part 1. Mem. Am. Math. Soc. 185(869), xi+324 p. (2007)Google Scholar
  55. [Mo11a]
    Mochizuki, T.: Wild harmonic bundles and wild pure twistor D-modules. Astérisque 340, x+607 p. (2011)Google Scholar
  56. [Mo11b]
    Mochizuki, T.: Asymptotic behaviour of variation of pure polarized TERP structures. Publ. RIMS Kyoto Univ. 47(2), 419–534 (2011)CrossRefMATHGoogle Scholar
  57. [Mu95]
    Murata, Y.: Classical solutions of the third Painlevé equation. Nagoya Math. J. 139, 37–65 (1995)CrossRefMATHMathSciNetGoogle Scholar
  58. [Ni09]
    Niles, D.: The Riemann-Hilbert-Birkhoff inverse monodromy problem and connection formulae for the third Painlevé transcendents, vii+76 p. Dissertation, Purdue University, Indiana, 2009Google Scholar
  59. [No04]
    Noumi, M.: Painlevé equations through symmetry. Translations of Math. Monographs, vol. 223. Amer. Math. Soc., Providence (2004)Google Scholar
  60. [NTY02]
    Noumi, M., Takano, K., Yamada, Y.: Bäcklund transformations and the manifolds of Painlevé systems. Funkcial. Ekvac. 45(2), 237–258 (2002)MATHMathSciNetGoogle Scholar
  61. [NY04]
    Noumi, M., Yamada, Y.: Symmetries in Painlevé equations. Sugaku Expositions 17, 203–218 (2004)MATHMathSciNetGoogle Scholar
  62. [OKSK06]
    Ohyama, Y., Kawamuko, H., Sakai, H., Okamoto, K.: Studies on the Painlevé equations, V, third Painlevé equations of special type P III(D 7) and P III(D 8). J. Math. Sci. Univ. Tokyo 13, 145–204 (2006)MATHMathSciNetGoogle Scholar
  63. [OO06]
    Ohyama, Y., Okumura, S.: A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations. J. Phys. A 39, 12129–12151 (2006)CrossRefMATHMathSciNetGoogle Scholar
  64. [Ok79]
    Okamoto, K.: Sur les feuilletages associés aux equations du second ordre à points critiques fixes de P. Painlevé. Jpn. J. Math. 5, 1–79 (1979)MATHGoogle Scholar
  65. [Ok86]
    Okamoto, K.: Isomonodromic deformation and Painlevé equations and the Garnier system. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33, 575–618 (1986)MATHMathSciNetGoogle Scholar
  66. [Ok87]
    Okamoto, K.: Studies on the Painlevé equations. IV. Third Painlevé equation P III. Funkcial. Ekvac. 30, 305–332 (1987)Google Scholar
  67. [PS03]
    van der Put, M., Singer, M.F.: Galois theory of linear differential equations. Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, New York (2003)Google Scholar
  68. [PS09]
    van der Put, M., Saito, M.-H.: Moduli spaces for linear differential equations and the Painlevé equations. Ann. Inst. Fourier (Grenoble) 59(7), 2611–2667 (2009)Google Scholar
  69. [PT14]
    van der Put, M., Top, J.: Geometric aspects of the Painlevé equations PIII(D 6) and PIII(D 7). SIGMA 10, 24 p. (2014)Google Scholar
  70. [Sa02]
    Sabbah, C.: Déformations isomonodromiques et variétés de Frobenius. Savoirs Actuels, EDP Sciences, Les Ulis, 2002, Mathématiques. English translation: Isomonodromic deformations and Frobenius manifolds. Universitext, Springer and EDP Sciences, 2007Google Scholar
  71. [Sa05a]
    Sabbah, C.: Fourier-Laplace transform of a variation of polarized complex Hodge structure. J. Reine Angew. Math. 621, 123–158 (2008)MATHMathSciNetGoogle Scholar
  72. [Sa05b]
    Sabbah, C.: Polarizable twistor \(\mathcal{D}\)-modules. Astérisque 300, vi+208 p. (2005)Google Scholar
  73. [Sa13]
    Sabbah, C.: Introduction to Stokes structures. Lecture Notes in Mathematics, vol. 2060, xiv + 249 p. Springer, New York (2013)Google Scholar
  74. [Sa01]
    Sakai, H.: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Comm. Math. Phys. 220, 165–229 (2001)CrossRefMATHMathSciNetGoogle Scholar
  75. [Sch73]
    Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973)CrossRefMATHMathSciNetGoogle Scholar
  76. [ShT97]
    Shioda, T., Takano, K.: On some Hamiltonian structures of Painlevé systems, I. Funkcial. Ekvac. 40, 271–291 (1997)MATHGoogle Scholar
  77. [Si67]
    Sibuya, Y.: Perturbation of linear ordinary differential equations at irregular singular points. Funkcial. Ekvac. 11, 235–246 (1968)MATHMathSciNetGoogle Scholar
  78. [Si90]
    Sibuya, Y.: Linear differential equations in the complex domain: problems of analytic continuation. Translations of Math. Monographs, vol. 82. Amer. Math. Soc., Providence (1990)Google Scholar
  79. [Ta07]
    Takei, Y. (ed.): Algebraic, analytic and geometric aspects of complex differential equations. Painlevé hierarchies. RIMS Kôkyûroku Bessatsu B2. RIMS, Kyoto University (2007).Google Scholar
  80. [Te96]
    Temme, N.M.: Special Functions. An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)CrossRefMATHGoogle Scholar
  81. [Te07]
    Terajima, H.: Families of Okamoto-Painlevé pairs and Painlevé equations. Ann. Mat. Pura Appl. (4) 186(1), 99–146 (2007)Google Scholar
  82. [TOS05]
    Tsuda, T., Okamoto, K., Sakai, H.: Folding transformation of the Painlevé equations. Math. Annalen 331, 713–738 (2005)CrossRefMATHMathSciNetGoogle Scholar
  83. [Um98]
    Umemura, H.: Painlevé equations and classical functions. Sugaku Expositions 11, 77–100 (1998)MathSciNetGoogle Scholar
  84. [UW98]
    Umemura, H., Watanabe, H.: Solutions of the third Painlevé equation. I. Nagoya Math. J. 151, 1–24 (1998)CrossRefMATHGoogle Scholar
  85. [Um01]
    Umemura, H.: Painlevé equations in the past 100 years. Am. Math. Soc. Transl. (2) 204, 81–110 (2001)Google Scholar
  86. [LW92]
    Levi, D., Winternitz, P. (eds.): Painlevé transcendents. In: Their Asymptotics and Physical Applications. Nato ASI Series, Series B: Physics, vol. 278 (1992)Google Scholar
  87. [Wi00]
    Widom, H.: On the solution of a Painlevé III equation. Math. Phys. Ana. Geom. (4) 3, 375–384 (2000)Google Scholar
  88. [Wi04]
    Witte, N.S.: New transformations for Painlevé’s third transcendent. Proc. Am. Math. Soc. 132(6), 1649–1658 (2004)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martin A. Guest
    • 1
  • Claus Hertling
    • 2
  1. 1.Department of Mathematics, Faculty of Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Lehrstuhl Für Mathematik VIUniversität MannheimMannheimGermany

Personalised recommendations