Skip to main content

Part of the book series: Mechanical Engineering Series ((MES))

  • 1002 Accesses

Abstract

This chapter is sandwiched between Chaps. 6 and 8 which deal with the issues of the discovery of complex characteristics and their analysis and about the publication history of the characteristics paper Lyczkowski et al. (Nucl Sci Eng 66:378–396, 1978 [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Speed of sound

g :

Gravitational acceleration

K :

Drag function

P :

Pressure

u :

Velocity in x direction

t :

Time

x :

Coordinate direction

α :

Volume fraction

λ :

Eigenvalue of the characteristic polynomial = dx/dt

ρ :

Microscopic material density

i :

Phase i = solid or liquid

j :

Phase j = gas or vapor

References

  1. R.W. Lyczkowski, D. Gidaspow, C.W. Solbrig, E.D. Hughes, Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations. Nucl. Sci. Eng. 66, 378–396 (1978)

    Article  Google Scholar 

  2. E.D. Hughes, R.W. Lyczkowski, J.H. McFadden, G.F. Niederauer, An Evaluation of State-of-the-Art Two-velocity Two-phase Models and their Applicability to Nuclear Reactor Transient Analysis Volume 1: Summary, Final Report of Technical Services Agreement SOA 75-317, Electric Power Research Institute, EPRI NP-143, vol I (1976)

    Google Scholar 

  3. E.D. Hughes, R.W. Lyczkowski, J.H. McFadden, An Evaluation of State-of-the-Art Two-velocity Two-phase Models and their Applicability to Nuclear Reactor Transient Analysis Volume 2: Theoretical Bases, Final Report of Technical Services Agreement SOA 75-317, Electric Power Research Institute, EPRI NP-143, vol II (1976)

    Google Scholar 

  4. J.H. McFadden, R.W. Lyczkowski, G.F. Niederauer, An Evaluation of State-of-the-Art Two-velocity Two-phase Models and their Applicability to Nuclear Reactor Transient Analysis Volume 3: Data Comparisons, Final Report of Technical Services Agreement SOA 75-317, Electric Power Research Institute, EPRI NP-143, vol III (1976)

    Google Scholar 

  5. R.C. Mecredy, L.J. Hamilton, The effects of nonequilibrium heat, mass and momentum transfer on two-phase sound speed. Int. J. Heat Mass Transf. 15, 61–72 (1972)

    Article  MATH  Google Scholar 

  6. D. Gidaspow, in Two-Phase Flow Equations and Their Characteristics. Aerojet Nuclear Company Interoffice Correspondence Gidaspow-1-73 (1973)

    Google Scholar 

  7. R.W. Lyczkowski, D. Gidaspow, C.W. Solbrig, Multiphase Flow Models for Nuclear, Fossil and Biomass Energy Production, Advances in Transport Processes, vol II, ed. by A.S. Majumdar, R.A. Mashelkar (Wiley Eastern Ltd., New Delhi, 1982), pp. 198–351

    Google Scholar 

  8. D. Gidaspow, Multiphase Flow and Fluidization Continuum and Kinetic Theory Descriptions (Academic Press, San Diego, CA, 1994)

    MATH  Google Scholar 

  9. D.R. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems, 2nd edn. (Interscience Publishers, New York, 1967)

    Google Scholar 

  10. J. Xenakis, PL/1—FORMAC Symbolic Mathematics Interpreter, 360D-03.004 (IBM Corporation, 1969)

    Google Scholar 

  11. L.S. Tong, G.L. Bennett, NRC water-reactor safety-research program. Nucl. Saf. 18(1), 1–40 (1977)

    Google Scholar 

  12. A.R. Edwards, T.P. O’Brien, Studies of phenomena connected with the depressurization of water reactors. J. Br. Nucl. Energy Soc. 9, 125–135 (1970)

    Google Scholar 

  13. R.W. Lyczkowski, in Comparison of Preliminary SLC Code Results with Simplified Analytical and Numerical Solutions: Part I—Equal Velocity (EVET). RWL-5-72 Aerojet Nuclear Company Interoffice Correspondence (1972)

    Google Scholar 

  14. R.W. Lyczkowski, in Part II–Unequal Velocities and Equal Temperature (UVET). RWL-6-72 Aerojet Nuclear Company Interoffice Correspondence (1972)

    Google Scholar 

  15. R.W. Lyczkowski, in Transient Analytical and Numerical Solutions for UVUT Dispersed Flow Regime in A Vertical Pipe. RWL-17-73 Aerojet Nuclear Company Interoffice Correspondence (1973)

    Google Scholar 

  16. R.W. Lyczkowski, C.W. Solbrig, Calculation of the Governing Equations for a Seriated Unequal Velocity, Equal Temperature Two-phase Continuum, in 17th National Heat Transfer Conference, Computational Techniques for Nonequilibrium Two-phase Phenomena Session, AIChE Paper No. 23, Salt Lake City, Utah, August 14–17, 1977; Preprints of AIChE Papers, pp. 100–110 (American Institute of Chemical Engineers, New York, 1977); Lawrence Livermore Laboratory Report UCRL-82635, 1979; AIChE J. 26(1), 89–98 (1980)

    Google Scholar 

  17. R.W. Lyczkowski, in Comparison of Transient EVET Results with Compressible Frictionless Flow of an Ideal Gas. RWL-18-73 Aerojet Nuclear Company Interoffice Correspondence (1973)

    Google Scholar 

  18. R.A. Grimacy, R.W. Lyczkowski, in Numerical Boundary Conditions for Blowdown of an Ideal Gas for EVET MOD003. Gri-2-74, RWL-9-74 Aerojet Nuclear Company Interoffice Correspondence (1974)

    Google Scholar 

  19. G. Rudinger, Nonsteady Duct Flow (Dover Publications, Inc., New York, 1969), pp. 186–193

    Google Scholar 

  20. T.N. Dinh, R.R. Nourgaliev, T.G. Theophanus, in Understanding the Ill-Posed Two-Phase Model, The 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea, Oct 5–9, 2003. Korean Nuclear Society (2003)

    Google Scholar 

  21. T. Vazquez-Gonzalez, A. Llor, Christophe Fochesato, Ransom test results from various two-fluid schemes: is forcing hyperbolicity a thermodynamically consistent option? Int. J. Multiph. Flow 81, 104–112 (2016)

    Article  Google Scholar 

  22. V.H. Ransom, in Numerical Benchmark Test No. 2.1 Faucet Flow, Multiphase Science and Technology, vol 3, ed. by G.F. Hewett, J.M. Delhaye, N. Zuber (Hemisphere Publishing Corp., Washington, 1987), pp. 465–467

    Google Scholar 

  23. R.W. Lyczkowski, Analytical Solutions for Gravity Dominated Flow. RWL-23-73 Aerojet Nuclear Company Interoffice Correspondence (December 26, 1973)

    Google Scholar 

  24. R.W. Lyczkowski, D. Gidaspow, C.W. Solbrig, E.D. Hughes, Characteristics and Stability Analyses of Transient One-dimensional Two-phase Flow Equations and their Finite Difference Approximations. Presented at the Winter Annual ASME Meeting, Fundamentals of Two-phase Flow Session, Paper No. 75-WA/HT-23, also, Discussion on ASME 75-WA/HT-23, Houston, November 30–December 4, 1975

    Google Scholar 

  25. R.W. Lyczkowski, Analytical and Numerical Solutions for Gravity Dominated Flow with Interfacial Shear. RWL-6-74 Aerojet Nuclear Company Interoffice Correspondence (1974)

    Google Scholar 

  26. V.H. Ransom, D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53, 124–151 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. M.L. de Bertodano, W. Fullmer, A. Clausse, V.H. Ransom, in Two-Fluid Model Stability, Simulation and Chaos (Springer International Publishing, Switzerland, 2017)

    Google Scholar 

  28. D. Gidaspow, Roundtable Discussion (RT-1-2) Modeling of Two-phase Flow, in Proceedings of the 5th International Heat Transfer Conference, vol VII, Tokyo, Japan, Sept 3–7, pp. 163–168. Includes E.D. Hughes, R.W. Lyczkowski, G.A. Mortensen, C. Noble, J.D. Ramshaw, V.H. Ransom, C.W. Solbrig, J.A. Trapp, The UVUT Approach, pp. 166–167 (1974)

    Google Scholar 

  29. J.D. Ramshaw, J.A. Trapp, Characteristics, Stability, and Short-wavelength Phenomena in Two-phase Flow Equation Systems, Aerojet Nuclear Company Report ANCR-1272 (February 1976). Nucl. Sci. Eng. 66, 93–102 (1978)

    Article  Google Scholar 

  30. G. Rudinger, A. Chang, Analysis of nonsteady two-phase flow. Phys. Fluids 7(11), 1747–1754 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  31. R.W. Lyczkowski, Generalization of Rudingers Solid Particle-Gas Equations for a Backup UVUT Equations Set. RWL-5-74 Aerojet Nuclear Company Interoffice Correspondence (March 21, 1974)

    Google Scholar 

  32. R.W. Lyczkowski, Transient Propagation Behavior of Two-phase Flow Equations, in 15th National Heat Transfer Conference, Two-phase Flow Session, AIChE Paper No. 41, San Francisco, August 10–13, 1975, Heat Transfer: Research and Application, ed. by J.C. Chen, AIChE Symposium Series, No. 174, vol 74, 165–174 (American Institute Chemical Engineers, New York, 1978)

    Google Scholar 

  33. M. Arai, Characteristics and stability analyses for two-phase flow equations with viscous terms. Nucl. Sci. Eng. 74, 77–83 (1980)

    Article  Google Scholar 

  34. V.H. Ransom, in A UVET System for Equations Including Transverse Momentim Considerations, RANS-2-73 Aerojet Nuclear Company Interoffice Correspondence (October 17, 1973)

    Google Scholar 

  35. W.H. Lee, R.W. Lyczkowski, The basic character of five two-phase flow model equation sets. Int. J. Numer. Meth. Fluids 33, 1075–1098 (2000)

    Google Scholar 

  36. H. Stadke, Gasdynamic Aspects of Two-Phase Flow Hyperbolicity, Wave Propagation Phenomena, and Related Numerical Methods (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  37. Boure, J.A. Fritte, M. Giot, M. Reocreux, in Choking Flows and Small Disturbances, European Two-Phase Flow Group Meeting, Brussels, Paper F1 (1973)

    Google Scholar 

  38. G.T. Phillips, P.I. Nakayama, in Modifications to the VARMINT Code to Include Fluid Calculations at All Flow Speeds, Science Applications report SAI-73-612-LJ submitted to Aerojet Nuclear Company under Contract No. S-1135 (1973)

    Google Scholar 

  39. R.W. Lyczkowski, R.A. Grimesey, C.W. Solbrig, Pipe Blowdown Analyses Using Explicit Numerical Schemes, in 15th National Heat Transfer Conference, Heat Transfer in Reactor Safety Session, AIChE Paper No. 23, San Francisco, August 10–13, 1975, Heat Transfer: Research and Application, ed. by J.C. Chen, AIChE Symposium Series, No. 174, vol 74, 129–140 (American Institute of Chemical Engineers, New York, 1978)

    Google Scholar 

  40. K. Maize, in Too Dumb to Meter Follies, Fiascoes, Dead Ends and Duds on the US Road to Atomic Energy (Sawmill Creek Communications, North Charleston, South Carolina, 2012)

    Google Scholar 

  41. D.J. Barnum, in Comparative Analysis of Standard Problems—Standard Problem 2. Aerojet Nuclear Company Report I-296-75-1, Idaho Falls (1975)

    Google Scholar 

  42. C.W. Solbrig, C.L. Hocevar, E.D. Hughes, A Model for a Homogeneous Two-Phase Unequal Temperature Fluid, in 17th National Heat Transfer Conference, Computational Techniques for Nonequilibrium Two-phase Phenomena Session, AIChE Paper No. 24, Salt Lake City, Utah, August 14–17, 1977; Preprints of AIChE Papers (American Institute of Chemical Engineers, New York, 1977), pp. 139–151

    Google Scholar 

  43. R.W. Lyczkowski, C.W. Solbrig, in Constitutive Rate Equations for Flowing Phases Flashing at Unequal Velocities and Temperatures, Proceeding of Topical Meeting on Thermal Reactor Safety, July 31–August 5, 1977, Sun Valley, Idaho, CONF-77078, vol 2, pp. 2-425–2-442 (American Nuclear Society, Hinsdale, Illinois, 1977)

    Google Scholar 

  44. M. Bottoni, R.W. Lyczkowski, Modeling of bubbly and annular two-phase flow in subchannel geometries with BACCHUS-3D/TP. Nucl. Technol. 106, 186–201 (1994)

    Article  Google Scholar 

  45. V.H. Ransom, Transmittal of Report on “A UVUT Analysis of Blowdown From a Horizontal Pipe”. RANS-34-75 Aerojet Nuclear Company Interoffice Correspondence (April 29, 1975)

    Google Scholar 

  46. V.H. Ransom, First quarterly technical progress report for I-107, I-309, and I-336. RANS-48-75 Aerojet Nuclear Company Interoffice Correspondence (1975)

    Google Scholar 

  47. C.W. Solbrig, G.A. Mortensen, R.W. Lyczkowski, An Unequal Phase Velocity, Unequal Phase Temperature Theory Applied to Two-phase Blowdown from a Horizontal Pipe, Proceedings of the 1976 Heat Transfer and Fluid Mechanics Institute, University of California, Davis, California, June 21–23, 1976 (Stanford University Press, Stanford, 1976), pp. 60–76

    Google Scholar 

  48. O. Baker, Simultaneous flow of oil and gas. Oil Gas J. 53, 185–189 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Lyczkowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lyczkowski, R.W. (2018). The SLOOP Code Development. In: The History of Multiphase Science and Computational Fluid Dynamics. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-66502-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66502-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66501-6

  • Online ISBN: 978-3-319-66502-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics