Successive (Additional) Cambia

  • Marius-Nicușor Grigore
  • Constantin Toma


Successive cambia phenomenon (supernumerary or additional cambia)—considered by some authors as a structural anomaly—represents an intriguing anatomical feature found in halophytes. It is here treated as a reality found in many halophytic species that have been investigated—especially Chenopodiaceae species. A pivotal question is if this phenomenon could have an ecological and adaptive significance in relation to salinity factor. A hypothesis in this regard has been proposed related to the possibility that anatomical products derived from the activity of successive cambia to be involved in the enhancing salinity tolerance at structural level.


  1. Artschwager EF (1920) On the anatomy of Chenopodium album L. Am J Bot 7(6):252–260CrossRefGoogle Scholar
  2. Artschwager E (1926) Anatomy of the vegetative organs of the sugar beet. J Agric Res 33:143–176Google Scholar
  3. Bickenbach K (1932) Zur Anatomie und Physiologie einiger Strand und Dünenpflanzen. Beitrage zum Halophytenproblem. Beitr Biol Pflanz 15:334–370Google Scholar
  4. Black RF (1956) Effect of NaCl in water cultures on the ion uptake and growth of Atriplex hastata. Aust J Biol Sci 9:65–80Google Scholar
  5. Bonnier G, Du Sablon L (1905) Cours de Botanique. Phanérogames. Librairie Générale de l’ Enseignement, ParisGoogle Scholar
  6. Carlquist S (1975) Wood anatomy of Onagraceae, with notes on alternative modes of photosynthate movement in dicotyledonous woods. Ann Mo Bot Gard 62:386–424CrossRefGoogle Scholar
  7. Carlquist S (1996) Wood, bark, and stem anatomy of Gnetales: a summary. Int J Plant Sci 157(6 suppl):558–576Google Scholar
  8. Carlquist S (2001) Comparative wood anatomy, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  9. Carlquist S (2003) Wood and stem anatomy of woody Amaranthaceae s.s.: ecology, systematics and the problems of defining rays in dicotyledons. Bot J Linn Soc 143:1–19CrossRefGoogle Scholar
  10. Carlquist S (2007) Successive cambia revisited: ontogeny, histology, diversity, and functional significance. J Torrey Bot Soc 134(2):301–332CrossRefGoogle Scholar
  11. Cockrell RA (1941) A comparative study of the wood of several south American species of Strychnos. Am J Bot 28:32–41CrossRefGoogle Scholar
  12. Cooil BJ, de la Fuente RK, de la Pena RS (1965) Absorption and transport of sodium and potassium in squash. Plant Physiol 40:625–632CrossRefPubMedPubMedCentralGoogle Scholar
  13. De Bary A (1877) Vergleichende Anatomie der Vegetationsrgane der phanerogamen und farne. In: Hofmeister W (ed) Handbuch der physiologischen Botanik, vol 3. Wilhelm Engelmann, LeipzigGoogle Scholar
  14. Droysen K (1877) Beiträge zur Anatomie und Entwicklungsgeschichte der Zuckerrübe. Halle a. S. (Inaug. Diss.)Google Scholar
  15. Elbar OHA (2015) Development of the successive cambia in Sesuvium verrucosum Raf (Aizoaceae). Ann Agric Sci 60(2):203–208Google Scholar
  16. Esau K, Cheadle VI (1969) Secondary growth in Bougainvillea. Ann Bot 33:807–819CrossRefGoogle Scholar
  17. Eshel Y, Waisel Y (1965) The salt relations of Prosopis farcta (Banks et Sol.) Eig Isr J Bot 14:50–51Google Scholar
  18. Fahn A, Zimmermann MH (1982) Development of the successive cambia in Atriplex halimus (Chenopodiaceae). Bot Gaz 143(3):353–357CrossRefGoogle Scholar
  19. Fron G (1899) Recherches anatomiques sur la racine et la tige des Chénopodiacées. Ann Sc Nat 8-ème sér Bot 9:157–240Google Scholar
  20. Gernet CAV (1859) Notizen ueber den Bau des Holzkoerpers einiger Chenopodiaceen. Bull Soc Imp Nat Mosc 32:164–188Google Scholar
  21. Gheorhgieff S (1887) Beitrag zur vergleichenden Anatomie der Chenopodiaceen. Bot Centralbl ser 3 31:23–57, 53–57, 113–116, 151–154, 214–218, 251–255Google Scholar
  22. Greenway H, Thomas DA (1965) Plant response to saline substrates. V. Chloride regulation in the individual organs of Hordeum vulgare during treatment with sodium chloride. Aust J Biol Sci 18:505–524CrossRefGoogle Scholar
  23. Greguss P (1968) Xylotomy of the living cycads. Academiai Kiado, BudapestGoogle Scholar
  24. Grew N (1682) The anatomy of plants. With idea of a philosophical history of plants and several other lectures, read before the royal society. Printed by W. Rawlins for the Author, LondonGoogle Scholar
  25. Grigore M-N (2008) Introducere în Halofitologie. Elemente de anatomie integrativă. Edit. Pim, IaşiGoogle Scholar
  26. Grigore M-N (2012) Romanian salt tolerant plants. Taxonomy and ecology. Edit. Tehnopress, IasiGoogle Scholar
  27. Grigore M-N, Toma C (2005) Contributions to the knowledge of anatomical structure of some halophytes I. Stud Cerc Şt biol Univ Bacău 10:125–128Google Scholar
  28. Grigore M-N, Toma C (2006) Evidencing the successive cambia phenomenon on some halophylous representatives among Chenopodiaceae and its possible ecological-adaptive implications. Stud Com Complexul Muzeal St Nat “Ion Borcea” 21:87–93Google Scholar
  29. Grigore M-N, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 12(4):204–218Google Scholar
  30. Grigore M-N, Toma C (2008) Ecological anatomy of halophyte species from the Chenopodiaceae family. In: Advanced topics on mathematical biology and ecology. Proceedings of the 4th WSEAS International Conference on Mathematical Biology and Ecology–MABE ’08, Acapulco, Mexico, 25–27 Jan, pp 62–67Google Scholar
  31. Grigore M-N, Toma C (2010) Halofitele. Aspecte de anatomie ecologică. Edit. Univ. “Al. I. Cuza”, IaşiGoogle Scholar
  32. Grigore M-N, Toma C, Zamfirache M-M, Ivănescu L (2012) A survey of anatomical adaptations in Romanian halophytes. Towards an ecological interpretation. Fresenius Environ Bull 21(11b):3370–3375Google Scholar
  33. Grigore M-N, Toma C, Zamfirache M-M, Ivănescu L, Daraban I (2013) Anatomical and ecological observations in succulent (articulated) halophytes from Chenopodiaceae. Lucr Şt (Horticultură), USAMV “Ion Ionescu de la Brad” Iaşi 56(2):19–24Google Scholar
  34. Grigore M-N, Ivănescu L, Toma C (2014) Halophytes. An integrative anatomical study. Springer, ChamCrossRefGoogle Scholar
  35. Hagege D, Kevers C, Boucaud J, Gaspar T (1988) Activités peroxydasiques, production d’éthylène, lignification et limitation de croissance chez Suaeda maritima cultivé en l’absence de NaCl. Plant Physiol Biochem 26:609–614Google Scholar
  36. Hayward HE (1938) The structure of economic plants. Macmillan, New YorkGoogle Scholar
  37. Hérail J (1885) Recherches sur l’anatomie comparée de la tige des Dicotylédones. Ann Sci Nat sér 7 Bot 2:203–314Google Scholar
  38. Jacoby B (1964) Function of bean roots and stems in sodium retention. Plant Physiol 39:445–449CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jacoby B (1965) Sodium retention in excised bean stems. Physiol Plant 18:730–779CrossRefGoogle Scholar
  40. Jbir N, Chaibi W, Ammar S, Jemmali A, Ayadi A (2001) Effet du NaCl sur la croissance et la lignification des racines de deux espèces de blé différant par leur sensibilité au sel (abstract). Comp Rend Acad Sci ser III Sci de la Vie 324(9):863–868Google Scholar
  41. Kirchoff BK, Fahn A (1984) Initiation and structure of the secondary vascular system in Phytolacca dioica (Phytolaccaceae). Can J Bot 62:2580–2586CrossRefGoogle Scholar
  42. Kozlowski TT (1997) Response of woody plants to flooding and salinity. Physiol Monograph 1:1–29Google Scholar
  43. Li S, Showalter AM (1996) Immunolocalization of extension and potato tuber lectin in carrot, tomato, and potato. Physiol Plant 97:708–718CrossRefGoogle Scholar
  44. Mennega A (1980) Anatomy of the secondary xylem. In: Leeuwenberg AJM (ed) Angiospermae: Ordnung Gentianales fam. Logtaniaceae, Die natiirlichen Pflanzenfamilien, vol 28b(l), 2nd edn. Ducnker and Hum-blot, Berlin, pp 112–161Google Scholar
  45. Metcalfe CR, Chalk L (1972) Anatomy of the dicotyledons, vol 2. Clarendon, OxfordGoogle Scholar
  46. Mikesell JE, Popham RH (1976) Ontogeny and correlative relationship of the peimary thickening in four-o’clock plants (Nyctaginaceae) maintained under long and short photoperiods. Am J Bot 63:427–437CrossRefGoogle Scholar
  47. Morot L (1885) Recherches sur le péricycle ou couche périphérique dy cylindre central chez les Phanérogames. Ann Sci Nat 6-ème sér Bot 20:217–309Google Scholar
  48. Pfeiffer H (1926) Das abnorme Dickenwachstum. In: Handbuch der Pflanzenanatomie, vol 9(2). Gebrüder Bontraeger, Berlin, pp 1–272Google Scholar
  49. Prillieux M (1877) Anatomie comparée de la tigelle et du pivot de la Betterave pendant la germination. Bull Soc Bot France 24:239–244CrossRefGoogle Scholar
  50. Rajput KS, Rao KS (1999) Structural and developmental studies on cambial variant in Pupalia lappacea (Amaranthaceae). Ann Bot Fenn 36:137–141Google Scholar
  51. Rajput KS, Patil VS, Shah DG (2008) Formation of successive cambia and stem anatomy of Sesuvium sesuvioides (Aizoaceae). Bot J Linn Soc 158:548–555CrossRefGoogle Scholar
  52. Rao KS, Rajput KS (2003) Cambial variants in the roots of Glinus lotoides L. and G. oppositifolius (L.) A. DC. (Molluginaceae). Acta Bot Hungar 45(1–2):183–191CrossRefGoogle Scholar
  53. Regnault M (1860) Recherches sur les affinités de structure des tiges des partes du groupe des Cyclospermées. Ann Sci Nat Bot 4-ème sér 14:73–166Google Scholar
  54. Sanio C (1863) Einige Bemerkungen über den Gerbstoff und seine Vebreitung bei den Holzpflanzen. Bot Zeit 3:17–23Google Scholar
  55. Schenck H (1893) Beiträge zur Biologie und Anatomie der Lianen. Biol Mitheil Trop 5:1–271Google Scholar
  56. Șerbănescu-Jitariu G, Toma C (1980) Morfologia şi anatomia plantelor. Ed. Did. şi Ped, BucureştiGoogle Scholar
  57. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stevenson DW, Popham RA (1973) Ontogeny of the primary thickening meristem in seedlings of Bougainvillea spectabilis. Am J Bot 60:1–9CrossRefGoogle Scholar
  59. Terrazas T (1991) Origin and activity of successive cambia in Cycas (Cycadales). Am J Bot 78(10):1335–1344CrossRefGoogle Scholar
  60. van Tieghem PH (1870–1871) Recherches sur la symètrie de structure des plantes vasculaires. Ann Sci Nat Bot 5-ème sér 13:5–314Google Scholar
  61. Tiré C, De Rycke M, De Loose D, Inzé D, Van Montagu M, Engler G (1994) Extensin gene expression is induced by mechanical stimuli leading to local cell wall strenghtening in Nicotiana plumbaginifolia. Planta 195:175–181CrossRefPubMedGoogle Scholar
  62. Toma C, Niţă M, Zavaleche V (1991) Research of ecological, compared and ontogenetic anatomy upon some infraunits of Salsola kali L. An Şt Univ “Al. I. Cuza” Iaşi s. II a (Biol.) 37:5–21Google Scholar
  63. Van Vliet GJCM (1979) Wood anatomy of the Combretaceae. Blumea 25:141–223Google Scholar
  64. Volkens G (1893) Chenopodiaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, 3 (1a), Leipzig, W. Engelmann, pp 36–91Google Scholar
  65. Waisel Y (1972) Biology of halophytes. Academic, New YorkGoogle Scholar
  66. Wang L-W, Showalter AM, Ungar A (1997) Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). Am J Bot 84(9):1247–1255CrossRefPubMedGoogle Scholar
  67. Weiss E (1883) Das markständige Gefässbündelsystem eininger Dikotyledonen in seiner Beziehung zu den Blattspuren. Bot Centralbl 3 ser 15:280–295. 318–327, 358–367, 390–397, 401–415Google Scholar
  68. Seung GW, Kim JS, Kim JH, Baek M, Yang D, Lee MC, Chung BY (2004) Effects of salinity on lignin and hydroxycinnamic acid contents in rice. Korean Journ Crop Sci 49(5):368–372Google Scholar
  69. Wiessner J (1867) Einleitung in die technische Mikroskopie nebst mikroskopisch-technischen Untersuchungen. W. Braumüller, WienGoogle Scholar
  70. Willert DJV (1968) Tagesschwankungen des Ionengehaltes in Salicornia europaea in Abhängigkeit vom Sandort und von der Überflutung. Ber Deut Bot Ges 81:442–449Google Scholar
  71. Ye ZH, Varner JE (1991) Tissue-specific expression of cell wall protein in developing soybean tissues. Plant Cell 3:23–37CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marius-Nicușor Grigore
    • 1
  • Constantin Toma
    • 2
  1. 1.Faculty of BiologyAlexandru Ioan Cuza UniversityIasiRomania
  2. 2.Faculty of Biology, Plant Anatomy & Ecology LaboratoryAlexandru Ioan Cuza UniversityIasiRomania

Personalised recommendations