Kranz Anatomy

  • Marius-Nicușor Grigore
  • Constantin Toma
Chapter

Abstract

Kranz anatomy is very interesting as a perfect example of connection between structure and functional processes in C4 photosynthetic plants. It has been evidenced in the nineteenth century in many Chenpodiaceae species and recognized and nominated as Kranz anatomy later in the history of C4 photosynthesis. It comprises two closed and distinct chlorenchyma tissues: an external one and an inner bundle sheath tissue. These tissues are arranged concentrically with respect to vascular tissues. There are many sub-types described in the frame of this chlorenchymatic arrangement and they are reviewed here in relation to old research findings.

References

  1. Adam P (1990) Saltmarsh ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Akhani H, Trimborn P, Ziegler H (1997) Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst Evol 206(1–4):187–221CrossRefGoogle Scholar
  3. Arcanheli G (1890) Sulla struttura delle foglie dell’ Atriplex nummularia Lind. in relazione alla assimilazione. Nuova giorn Ital 22:426–430Google Scholar
  4. Chermezon H (1910) Recherches anatomiques sur les plantes littorales. Ann Sci Nat sér 9 Bot 12:117–313Google Scholar
  5. Carolin RC, Jacobs SWL, Vesk M (1975) Leaf structure in Chenopodiaceae. Bot Jahr Syst Pflanzengeschichte and Pflanyengeographie 95:226–255Google Scholar
  6. Carolin RC, Jacobs SWL, Vesk M (1982) The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust J Bot 30:387–392CrossRefGoogle Scholar
  7. Clements FE (1920) Plant indicators: the relation of plant communities to process and practice. Carnegie Institution, WashingtonGoogle Scholar
  8. Dengler NG, Nelson T (1999) Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 133–172CrossRefGoogle Scholar
  9. Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Ann Rev Ecol Syst 24:411–439CrossRefGoogle Scholar
  10. Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299CrossRefPubMedGoogle Scholar
  11. Fisher DD, Schenk HJ, Thorsch JA, Ferren WR (1997) Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America. Am J Bot 84:1198–1210CrossRefPubMedGoogle Scholar
  12. Gamaley IB (1985) Variaţii kranţ—anatomii u rastenii pustyni Gobi i Karakumi (The variations of the Kranz-anatomy in Gobi and Karakum plants). Bot Jurn SSSR 70:1302–1314Google Scholar
  13. Grigore M-N (2008) Introducere în Halofitologie. Elemente de Anatomie Integrativă. PIM, IaşiGoogle Scholar
  14. Grigore M-N, Toma C (2007) Histo—anatomical strategies of Chenopodiaceae halophytes: adaptive, ecological and evolutionary implications. WSEAS Trans on Biol and Biomed 4:204–218Google Scholar
  15. Grigore M-N, Toma C (2008) Ecological anatomy of halophyte species from the Chenopodiaceae family. Advanced topics on mathematical biology and ecology (Proceedings of the 4th WSEAS International Conference on Mathematical Biology and Ecology—MABE ’08, Acapulco, Mexico, January 25–27, 2008), pp 62–67Google Scholar
  16. Grigore M-N, Toma C (2010) Halofitele. Aspecte de anatomie ecologică. Edit. Univ. “Al. I. Cuza”, IaşiGoogle Scholar
  17. Grigore M-N, Toma C, Ivănescu L (2011) Anatomical and ecological observations on Mediterranean halophytes: Suaeda Forssk. ex Scop. genus. Lucr. Şt. (Horticultură). USAMV “Ion Ionescu de la Brad”, Iaşi 54(1):23–28Google Scholar
  18. Grigore M-N, Toma C, Zamfirache M-M, Boscaiu M, Olteanu Z, Cojocaru D (2012a) Ecological anatomy in halophytes with C4 photosynthesis: discussing adaptative features in endangered ecosystems. Carpathian J of Earth and Environ Sci 7(2):13–21Google Scholar
  19. Grigore M-N, Toma C, Zamfirache M-M, Ivănescu L (2012b) A survey of anatomical adaptations in Romanian halophytes. Towards an ecological interpretation. Fres Environ Bull 21(11b):3370–3375Google Scholar
  20. Grigore M-N, Ivănescu L, Toma C (2014) Halophytes: an integrative anatomical study. Springer, Cham, HeidelbergGoogle Scholar
  21. Guttierez M, Gracen VF, Edwards GE (1974) Biochemical and cytological relationships in C4 plants. Planta 119:279–300CrossRefGoogle Scholar
  22. Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44:241–247CrossRefPubMedGoogle Scholar
  23. Hattersley PW, Browning AJ (1981) Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheats and PCR (“Kranz”) sheaths. Protoplasma 109:371–401CrossRefGoogle Scholar
  24. Henslow G (1895) The origin of plant-structures by self-adaptation to the environment. Kegan Paul, Trench, Trübner & Co, Ltd, Paternoster House, Charing Cross Road, LondonGoogle Scholar
  25. Jacobs SWL (2001) Review of leaf anatomy and ultrastructure in the Chenopodiaceae (Caryophyllales). J Torrey Bot Soc 128:236–253CrossRefGoogle Scholar
  26. Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164(6):959–986CrossRefGoogle Scholar
  27. Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 59–87Google Scholar
  28. Kearney TH (1904) Are plants of sea and dunes true halophytes? Bot Gaz 37:424–436CrossRefGoogle Scholar
  29. Keeley JE, Rundel OW (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int J Plant Sci 164(3 Suppl):55–77CrossRefGoogle Scholar
  30. Kellog EA (1999) Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 Plant biology. Academic, San Diego, pp 411–444CrossRefGoogle Scholar
  31. Kochánková J, Mandák B (2008) Biological flora of Central Europe: Atriplex tatarica L. Perspect Plant Ecol Evol System 10:217–229CrossRefGoogle Scholar
  32. Laetsch WM (1968) Chloroplast specialization in dicotyledons possessing the C4—dicarboxylic acid pathway of photosynthetic CO2 fixation. Am J Bot 55:875–883CrossRefGoogle Scholar
  33. Long SP (1999) Environmental responses. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 215–249CrossRefGoogle Scholar
  34. Long SP, Mason CF (1983) Saltmarsh ecology. Blackie, GlasgowGoogle Scholar
  35. Mcdougall WB (1941) Plant ecology, 3rd edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  36. Monteil P (1906) Anatomie compareé de la feuille des Chenopodiacees. Travaux de Laboratoire de Matiere Medicale de l’École Supérieure de Pharmacie de Paris 4:5–156Google Scholar
  37. Moser H (1934) Untersuchungen űber die Blattstruktur von Atriplex Arten und ihre Beziehungen zur Systematic. Beih Bot Centralbl 52:378–388Google Scholar
  38. Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Am J Bot 94(3):362–381CrossRefPubMedGoogle Scholar
  39. Paulsen O (1912) Studies on the vegetation of the Transcaspian lowlands. The second Danish Pamir expedition conducted by Olufsen O, Copenhagen, Gyldendalske Boghandel, Nordisk ForlagGoogle Scholar
  40. Pyankov V, Artyusheva EG, Edwards GE, Black CC Jr, Soltis PI (2001) Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae), based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. Am J Bot 88(7):1189–1198CrossRefPubMedGoogle Scholar
  41. Pyankov VI, Gunin PD, Tsoog S, Black CC (2000) C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123(1):15–31CrossRefPubMedGoogle Scholar
  42. Pyykkö M (1966) The leaf anatomy of East Patagonian xeromorphic plants. Ann Bot Fennici 3(3):453–622Google Scholar
  43. Raghavendra AS (1980) Characteristics of plant species intermediate between C3 and C4 pathways of photosynthesis: their focus of mechanism and evolution of C4 syndrome. Photosynthetica 14:271–173Google Scholar
  44. Sage RF (2001) Environmental and evolutionary preconditions for the origin and diversification of C4 photosynthesis syndrome. Plant Biol 3:202–213CrossRefGoogle Scholar
  45. Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370CrossRefGoogle Scholar
  46. Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic, San Diego, pp 313–373CrossRefGoogle Scholar
  47. Schimper AFW (1903) Plant geography upon a physiological basis. Clarendon, OxfordCrossRefGoogle Scholar
  48. Shomer-Ilan A, Beer S, Waisel Y (1975) Suaeda monoica, a C4 plant without typical bundle sheats. Plant Physiol 56:676–679CrossRefPubMedPubMedCentralGoogle Scholar
  49. Safiallah S, Hamdi SMM, Grigore M-N, Sara J (2017) Micromorphology and leaf ecological anatomy of Bassia halophyte species (Amaranthaceae) from Iran. Acta Biologica Szegediensis 61(1):85–93Google Scholar
  50. Takabayashi A, Kishine M, Asada K, Endo T, Sato F (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proc Natl Acad Sci USA 102(46):16898–16903CrossRefPubMedPubMedCentralGoogle Scholar
  51. Troughton JH, Card KA (1974) Leaf anatomy of Atriplex buchananii. New Zeal J Bot 12:167–177CrossRefGoogle Scholar
  52. Ueno O, Yoshimura Y, Sentoku N (2005) Variation in the activity of some enzymes of photorespiratory metabolism in C4 grases. Ann Bot 96:863–869CrossRefPubMedPubMedCentralGoogle Scholar
  53. Volkens G (1887) Die Flora der aegyptisch-arabischen Wüste auf Grundlage anatomisch-physiologischer Forschungen. Gebrüder, Borntraeger, BerlinGoogle Scholar
  54. Volkens G (1893) Chenopodiaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, 3(1a): 36-91Google Scholar
  55. Voznesenskaya EV, Franceschi VR, Pyankov VI, Edwards GE (1999) Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae (Chenopodiaceae). J Exp Bot 50(341):1779–1795CrossRefGoogle Scholar
  56. Wang RZ (2007) C4 plants in the deserts of China: occurrence of C4 photosynthesis and its morphological functional types. Photosynthetica 45(2):167–171CrossRefGoogle Scholar
  57. Warming E (1897) Halophyt-studier. D Kgl Danske Vidensk Selsk Skr 6, Raekke, naturvidenskabeling og mathematisk Afd. VIII 4:173–272Google Scholar
  58. Warming E (1909) Oecology of Plants. An introduction to the study of plant-communities. Clarendon, OxfordGoogle Scholar
  59. Wiessner J (1899) Uber die Formen der Anpassung der Blatter an die Lichtstarke. Biol Centralbl 19:1–14Google Scholar
  60. Yoshimura Y, Kubota F, Ueno O (2004) Structural and biochemical bases of photorespiration in C4 plants: quantification of organelles and glycine decarboxylase. Planta 220:307–317CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marius-Nicușor Grigore
    • 1
  • Constantin Toma
    • 2
  1. 1.Faculty of BiologyAlexandru Ioan Cuza UniversityIasiRomania
  2. 2.Faculty of Biology, Plant Anatomy & Ecology LaboratoryAlexandru Ioan Cuza UniversityIasiRomania

Personalised recommendations