Skip to main content

Group Control of Heterogeneous Robots and Unmanned Aerial Vehicles in Agriculture Tasks

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10459))

Included in the following conference series:

Abstract

The tasks of monitoring agricultural lands using multicopters, which have higher video capture speed, higher resolution, invariance to clouds and other advantages, are considered. The aim of the research is to develop formal model and algorithms for group control of heterogeneous robotic complexes, including unmanned aerial vehicles in solving agrarian problems. Based on the analysis of existing robotic solutions in the agricultural sector, the classification of the operations is given. A formal statement of the task of controlling a group of heterogeneous agricultural robots in a certain agricultural space is formulated. We have considered the parameters of a set of cultivated lands; the number of processing agricultural objects; a set of objects of basing and storage of robotic means; a set of cultivated crops; sets of heterogeneous robots; possible options for the approach of robots from the basing area to the cultivated territory, as well as a set of resource constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verschoor, A.H., Reijnders, L.: The environmental monitoring of large international companies. How and what is monitored and why. J. Clean. Prod. 9(1), 43–55 (2001)

    Article  Google Scholar 

  2. Rizky, A.P., Liyantono, M.S.: Multicopter development as a tool to determine the fertility of rice plants in the vegetation phase using aerial photos. Procedia Environ. Sci. 24, 258–265 (2015)

    Article  Google Scholar 

  3. Doll, P., Siebert, S.: Global modeling of irrigation water requirements. Water Resour. Res. 38(4), 8-1–8-10 (2002)

    Article  Google Scholar 

  4. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M.: IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  5. Tilman, D., Balzer, C., Hill, J., Befort, B.L.: Global food demand and the sustainable intensification of agriculture. Proc. National Acad. Sci. U.S. Am. 108(50), 20260–20264 (2011)

    Article  Google Scholar 

  6. Anderson, K., Gaston, K.J.: Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11(3), 138–146 (2013)

    Article  Google Scholar 

  7. Jones, H.G., Sirault, X.R.: Scaling of thermal images at different spatial resolution: the mixed pixel problem. Agronomy 4, 380–396 (2014)

    Article  Google Scholar 

  8. Herwitz, S.R., Johnson, L.F., Dunagan, S.E., Higgins, R.G., Sullivan, D.V., Zheng, J., Lobitz, B.M., Leunge, J.G., Gallmeyer, B.A., Aoyagi, M., Slye, R.E., Brass, J.A.: Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 44(1), 49–61 (2004)

    Article  Google Scholar 

  9. Johnson, L.F., Herwitz, S., Dunagan, S., Lobitz, B., Sullivan, D., Sly, R.: Collection of ultra-high spatial and spectral resolution image data over California vineyards with a small UAV. In: International Symposium on Remote Sensing of Environment, Honolulu, HI, 10–14 November 2003

    Google Scholar 

  10. Chapman, S.C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M.F., Holland, E., Zheng, B., Ling, T.J., Jimenez-Berni, J.: Phenocopter: a low-altitude, autonomous remote-sensing robotic helicopter for high-through put field-based phenotyping. Agronomy 4, 279–301 (2014)

    Article  Google Scholar 

  11. Zarco-Tejada, P.J., González-Dugo, V., Williams, L.E., Suárez, L., Berni, J.A.J., Goldhamer, D., Fereres, E.: A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band air-borne imagery and the CWSI thermal index. Remote Sens. Environ. 138, 38–50 (2013)

    Article  Google Scholar 

  12. Gagoa, J., Douthe, C., Coopmanc, R.E., Gallegoa, P.P., Ribas-Carbo, M., Flexas, J., Escalona, J., Medrano, H.: UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 153, 9–19 (2015)

    Article  Google Scholar 

  13. Afanas’ev, R.A., Ermolov, I.L.: Future of robots for precision agriculture. Mechatron. Autom. Manag. 12, 828–833 (2016)

    Google Scholar 

  14. Jakushev, V.P., Petrushin, A.F.: Possibilities for estimation of reclaimed agricultural land quality given by accumulation and processing information from remote sensing. Agrophysics 2(10), 52–58 (2013)

    Google Scholar 

  15. Sidorova, V.A., Zhukovsky, E.E., Lekomtsev, P.V., Yakushev, V.V.: Geostatistical analysis of soil characteristics and productivity in the field experiment on precise agriculture. Agrochem. Fertil. Soils 8, 879–888 (2012)

    Google Scholar 

  16. Vatamanjuk, I.V., Panina, G.J., Ronzhin, A.L.: Modeling of robotic systems’ trajectories in spatial reconfiguration of swarm. Robot. Tech. Cybern. 3(8), 52–57 (2015)

    Google Scholar 

  17. Krjuchkov, B.I., Karpov, A.A., Usov, V.M.: Promising approaches for the use of service robots in the domain of manned space exploration. SPIIRAS Proc. 32, 125–151 (2014)

    Article  Google Scholar 

  18. Motienko, A.I., Tarasov, A.G., Dorozhko, I.V., Basov, O.O.: Proactive control of robotic systems for rescue operations. SPIIRAS Proc. 46, 169–189 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Russian Foundation for Basic Research (grant № 16–08–00696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Ronzhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vu, Q., Nguyen, V., Solenaya, O., Ronzhin, A. (2017). Group Control of Heterogeneous Robots and Unmanned Aerial Vehicles in Agriculture Tasks. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science(), vol 10459. Springer, Cham. https://doi.org/10.1007/978-3-319-66471-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66471-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66470-5

  • Online ISBN: 978-3-319-66471-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics