Advertisement

Recognition of Indoors Activity Sounds for Robot-Based Home Monitoring in Assisted Living Environments

  • Prasitthichai Naronglerdrit
  • Iosif Mporas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10459)

Abstract

In this paper we present a methodology for the recognition of indoors human activities using microphone for robotic applications on the move. In detail, a number of classification algorithms were evaluated in the task of home sound classification using real indoors conditions and different realistic setups for recordings of sounds from different locations - rooms. The evaluation results showed the ability of the methodology to be used for monitoring of home activities in real conditions with the best performing algorithm being the support vector machine classifier with accuracy equal to 94.89%.

Keywords

Sound recognition Assisted living environments Home robotic assistance 

References

  1. 1.
    Do, H.M., Sheng, W., Liu, M.: Human-assisted sound event recognition for home service robots. Robot. Biomimetics 3(1), 1 (2016)CrossRefGoogle Scholar
  2. 2.
    D’Arcy, T., Stanton, C., Bogdanovych, A.: Teaching a robot to hear: a real-time on-board sound classification system for a humanoid robot. In: Proceedings of Australasian Conference on Robotics and Automation (2013)Google Scholar
  3. 3.
    Do, H.M., Sheng, W., Liu, M., Zhang, S.: Context-aware sound event recognition for home service robots. In: 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 739–744. IEEE (2016)Google Scholar
  4. 4.
    Politi, O., Mporas, I., Megalooikonomou, V.: Human motion detection in daily activity tasks using wearable sensors. In: 2014 Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), pp. 2315–2319. IEEE (2014)Google Scholar
  5. 5.
    Naranjo-Hernández, D., Roa, L.M., Reina-Tosina, J., Estudillo-Valderrama, M.A.: Som: a smart sensor for human activity monitoring and assisted healthy ageing. IEEE Trans. Biomed. Eng. 59, 3177–3184 (2012)CrossRefGoogle Scholar
  6. 6.
    Politi, O., Mporas, I., Megalooikonomou, V.: Comparative evaluation of feature extraction methods for human motion detection. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Sioutas, S., Makris, C. (eds.) AIAI, pp. 146–154. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44722-2_16
  7. 7.
    Ince, N.F., Min, C.-H., Tewfik, A.H.: Integration of wearable wireless sensors and non-intrusive wireless in-home monitoring system to collect and label the data from activities of daily living. In: 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, pp. 28–31. IEEE (2006)Google Scholar
  8. 8.
    Uslu, G., Altun, Ö., Baydere, S.: A Bayesian approach for indoor human activity monitoring. In: 2011 11th International Conference on Hybrid Intelligent Systems (HIS), pp. 324–327. IEEE (2011)Google Scholar
  9. 9.
    Thiruvengada, H., Srinivasan, S., Gacic, A.: Design and implementation of an automated human activity monitoring application for wearable devices. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 2252–2258. IEEE (2008)Google Scholar
  10. 10.
    Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15, 1321–1330 (2015)CrossRefGoogle Scholar
  11. 11.
    Yan, L., Bae, J., Lee, S., Roh, T., Song, K., Yoo, H.-J.: A 3.9 Mw 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J. Solid-State Circuits 46, 353–364 (2011)CrossRefGoogle Scholar
  12. 12.
    Ravanshad, N., Rezaee-Dehsorkh, H., Lotfi, R., Lian, Y.: A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Inform. 18, 183–192 (2014)CrossRefGoogle Scholar
  13. 13.
    Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10, 119–128 (2006)CrossRefGoogle Scholar
  14. 14.
    Leonov, V.: Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens. J. 13, 2284–2291 (2013)CrossRefGoogle Scholar
  15. 15.
    Gabriel, I.V., Anghelescu, P.: Vibration monitoring system for human activity detection. In: 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. AE-41–AE-44. IEEE (2015)Google Scholar
  16. 16.
    Shad, A., Rodriguez-Villegas, E.: Proof of concept of a shoe based human activity monitor. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6398–6401. IEEE (2012)Google Scholar
  17. 17.
    Zhou, Z., Dai, W., Eggert, J., Giger, J.T., Keller, J., Rantz, M., He, Z.: A real-time system for in-home activity monitoring of elders. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6115–6118 (2009)Google Scholar
  18. 18.
    Amiri, S.M., Pourazad, M.T., Nasiopoulos, P., Leung, V.C.: Non-intrusive human activity monitoring in a smart home environment. In: 2013 IEEE 15th International Conference on e-Health Networking, Applications & Services (Healthcom), pp. 606–610. IEEE (2013)Google Scholar
  19. 19.
    Zouba, N., Bremond, F., Thonnat, M.: An activity monitoring system for real elderly at home: validation study. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 278–285. IEEE (2010)Google Scholar
  20. 20.
    Zhou, Z., Chen, X., Chung, Y.-C., He, Z., Han, T.X., Keller, J.M.: Activity analysis, summarization, and visualization for indoor human activity monitoring. IEEE Trans. Circuits Syst. Video Technol. 18, 1489–1498 (2008)CrossRefGoogle Scholar
  21. 21.
    Medjahed, H., Istrate, D., Boudy, J., Dorizzi, B.: Human activities of daily living recognition using fuzzy logic for elderly home monitoring. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2009, pp. 2001–2006. IEEE (2009)Google Scholar
  22. 22.
    Chen, J., Kam, A.H., Zhang, J., Liu, N., Shue, L.: Bathroom activity monitoring based on sound. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 47–61. Springer, Heidelberg (2005). doi: 10.1007/11428572_4 CrossRefGoogle Scholar
  23. 23.
    Vuegen, L., Van Den Broeck, B., Karsmakers, P., Vanrumste, B.: Automatic monitoring of activities of daily living based on real-life acoustic sensor data: a preliminary study. In: Fourth Workshop on Speech and Language Processing for Assistive Technologies (SLPAT) Proceedings, pp. 113–118. Association for Computational Linguistics (ACL) (2013)Google Scholar
  24. 24.
    Stork, J.A., Spinello, L., Silva, J., Arras, K.O.: Audio-based human activity recognition using non-Markovian ensemble voting. In: RO-MAN, pp. 509–514. IEEE (2012)Google Scholar
  25. 25.
    Bian, X., Abowd, G.D., Rehg, J.M.: Using Sound Source Localization to Monitor and Infer Activities in the Home. Georgia Institute of Technology, Atlanta (2004)Google Scholar
  26. 26.
    Marsh, A., Biniaris, C., Velentzas, R., Leguay, J., Ravera, B., Lopez-Ramos, M., Robert, E.: A multi-modal health and activity monitoring framework for elderly people at home. In: Yogesan, K., Bos, L., Brett, P., Gibbons, M.C. (eds.) Handbook of Digital Homecare, pp. 287–298. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01387-4_14
  27. 27.
    Motamed, C., Lherbier, R., Hamad, D.: A multi-sensor validation approach for human activity monitoring. In: 2005 8th International Conference on Information Fusion, 8 pp. IEEE (2005)Google Scholar
  28. 28.
    Tao, L., Burghardt, T., Hannuna, S., Camplani, M., Paiement, A., Damen, D., Mirmehdi, M., Craddock, I.: A comparative home activity monitoring study using visual and inertial sensors. In: 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), pp. 644–647. IEEE (2015)Google Scholar
  29. 29.
    Ketabdar, H., Qureshi, J., Hui, P.: Motion and audio analysis in mobile devices for remote monitoring of physical activities and user authentication. J. Location Based Serv. 5, 182–200 (2011)CrossRefGoogle Scholar
  30. 30.
    Boersma, P., Weenink, D.: Praat: Doing Phonetics by Computer (Version 5.3.51) [Computer Program] (2009). Accessed 1 May 2009Google Scholar
  31. 31.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Engineering, Faculty of Engineering at SrirachaKasetsart UniversityChonburiThailand
  2. 2.School of Engineering and TechnologyUniversity of HertfordshireHatfieldUK

Personalised recommendations