Skip to main content

Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments

  • Conference paper
  • First Online:
Book cover Interactive Collaborative Robotics (ICR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10459))

Included in the following conference series:

Abstract

The paper considers the problem of planning a set of non-conflict trajectories for the coalition of intelligent agents (mobile robots). Two divergent approaches, e.g. centralized and decentralized, are surveyed and analyzed. Decentralized planner – MAPP is described and applied to the task of finding trajectories for dozens UAVs performing nap-of-the-earth flight in urban environments. Results of the experimental studies provide an opportunity to claim that MAPP is a highly efficient planner for solving considered types of tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://wiki.openstreetmap.org/wiki/Database.

References

  1. Koenig, S., Likhachev, M.: D* lite. In: Proceedings of the AAAI Conference of Artificial Intelligence (AAAI), pp. 476–483 (2002)

    Google Scholar 

  2. Magid, E., Keren, D., Rivlin, E., Yavneh, I.: Spline-based robot navigation. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China, 9–15 October 2006, pp. 2296–2301 (2006)

    Google Scholar 

  3. Yakovlev, K., Baskin, E., Hramoin, I.: Grid-based angle-constrained path planning. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 208–221. Springer, Cham (2015). doi:10.1007/978-3-319-24489-1_16

    Chapter  Google Scholar 

  4. Harabor, D., Grastien, A., Öz, D., Aksakalli, V.: Optimal any-angle pathfinding in practice. J. Artif. Intell. Res. (JAIR) 56, 89–118 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot. Res. 3(4), 76–88 (1984)

    Article  Google Scholar 

  6. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  7. Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning - using the Voronoi diagram for a clearance-based shortest path. IEEE Robot. Autom. Mag. 15(2), 58–66 (2008)

    Article  Google Scholar 

  8. Kallmann, M.: Navigation queries from triangular meshes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 230–241. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16958-8_22

    Chapter  Google Scholar 

  9. Yap, P.: Grid-based path-finding. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS, vol. 2338, pp. 44–55. Springer, Heidelberg (2002). doi:10.1007/3-540-47922-8_4

    Chapter  Google Scholar 

  10. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  11. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings of The 24th AAAI Conference on Artificial Intelligence (AAAI-2010), pp. 173–178 (2010)

    Google Scholar 

  12. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  13. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boyarski, E., Felner, A., Stern, R., Sharon, F., Tolpin, D., Betzalel, D., Shimony, S.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), pp. 740–746 (2015)

    Google Scholar 

  15. Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: Proceedings of The 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2011), pp. 3260–3267 (2011)

    Google Scholar 

  16. Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: Proceedings of The 22d International Joint Conference on Artificial Intelligence (IJCAI-2011), vol. 1, pp. 668–673. AAAI Press (2011)

    Google Scholar 

  17. Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem. In: Proceedings of the 7th Annual Symposium on Combinatorial Search (SOCS-2014), pp. 19–27 (2014)

    Google Scholar 

  18. Erdmann, M., Lozano-Pérez, T.: On multiple moving objects. Algorithmica 2, 1419–1424 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zelinsky, A.: A mobile robot exploration algorithm. IEEE Trans. Robot. Autom. 8(6), 707–717 (1992)

    Article  Google Scholar 

  20. Silver, D.: Cooperative pathfinding. In: Proceedings of the 1st Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-2005), pp. 117–122 (2005)

    Google Scholar 

  21. Bnaya, Z., Felner, A.: Conflict-oriented windowed hierarchical cooperative A\({^\ast }\). In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA-2014), pp. 3743–3748 (2014)

    Google Scholar 

  22. Wang, K.-H.C., Botea, A.: Tractable multi-agent path planning on grid maps. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-2009), pp. 1870–1875 (2009)

    Google Scholar 

  23. Čáp, M., Novák, P., Kleiner, A., Selecký, M.: Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Trans. Autom. Sci. Eng. 12(3), 835–849 (2015)

    Article  Google Scholar 

  24. Wang, K.-H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. (JAIR) 42, 55–90 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 16-11-00048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Andreychuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Andreychuk, A., Yakovlev, K. (2017). Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science(), vol 10459. Springer, Cham. https://doi.org/10.1007/978-3-319-66471-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66471-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66470-5

  • Online ISBN: 978-3-319-66471-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics