Advertisement

Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments

  • Anton AndreychukEmail author
  • Konstantin Yakovlev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10459)

Abstract

The paper considers the problem of planning a set of non-conflict trajectories for the coalition of intelligent agents (mobile robots). Two divergent approaches, e.g. centralized and decentralized, are surveyed and analyzed. Decentralized planner – MAPP is described and applied to the task of finding trajectories for dozens UAVs performing nap-of-the-earth flight in urban environments. Results of the experimental studies provide an opportunity to claim that MAPP is a highly efficient planner for solving considered types of tasks.

Keywords

Path planning Path finding Heuristic search Multi-agent path planning Multi-agent path finding MAPP 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 16-11-00048).

References

  1. 1.
    Koenig, S., Likhachev, M.: D* lite. In: Proceedings of the AAAI Conference of Artificial Intelligence (AAAI), pp. 476–483 (2002)Google Scholar
  2. 2.
    Magid, E., Keren, D., Rivlin, E., Yavneh, I.: Spline-based robot navigation. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China, 9–15 October 2006, pp. 2296–2301 (2006)Google Scholar
  3. 3.
    Yakovlev, K., Baskin, E., Hramoin, I.: Grid-based angle-constrained path planning. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 208–221. Springer, Cham (2015). doi: 10.1007/978-3-319-24489-1_16 CrossRefGoogle Scholar
  4. 4.
    Harabor, D., Grastien, A., Öz, D., Aksakalli, V.: Optimal any-angle pathfinding in practice. J. Artif. Intell. Res. (JAIR) 56, 89–118 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot. Res. 3(4), 76–88 (1984)CrossRefGoogle Scholar
  6. 6.
    Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning - using the Voronoi diagram for a clearance-based shortest path. IEEE Robot. Autom. Mag. 15(2), 58–66 (2008)CrossRefGoogle Scholar
  8. 8.
    Kallmann, M.: Navigation queries from triangular meshes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 230–241. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16958-8_22 CrossRefGoogle Scholar
  9. 9.
    Yap, P.: Grid-based path-finding. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS, vol. 2338, pp. 44–55. Springer, Heidelberg (2002). doi: 10.1007/3-540-47922-8_4 CrossRefGoogle Scholar
  10. 10.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  11. 11.
    Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings of The 24th AAAI Conference on Artificial Intelligence (AAAI-2010), pp. 173–178 (2010)Google Scholar
  12. 12.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)CrossRefGoogle Scholar
  13. 13.
    Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boyarski, E., Felner, A., Stern, R., Sharon, F., Tolpin, D., Betzalel, D., Shimony, S.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), pp. 740–746 (2015)Google Scholar
  15. 15.
    Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: Proceedings of The 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2011), pp. 3260–3267 (2011)Google Scholar
  16. 16.
    Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: Proceedings of The 22d International Joint Conference on Artificial Intelligence (IJCAI-2011), vol. 1, pp. 668–673. AAAI Press (2011)Google Scholar
  17. 17.
    Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem. In: Proceedings of the 7th Annual Symposium on Combinatorial Search (SOCS-2014), pp. 19–27 (2014)Google Scholar
  18. 18.
    Erdmann, M., Lozano-Pérez, T.: On multiple moving objects. Algorithmica 2, 1419–1424 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zelinsky, A.: A mobile robot exploration algorithm. IEEE Trans. Robot. Autom. 8(6), 707–717 (1992)CrossRefGoogle Scholar
  20. 20.
    Silver, D.: Cooperative pathfinding. In: Proceedings of the 1st Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-2005), pp. 117–122 (2005)Google Scholar
  21. 21.
    Bnaya, Z., Felner, A.: Conflict-oriented windowed hierarchical cooperative A\({^\ast }\). In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA-2014), pp. 3743–3748 (2014)Google Scholar
  22. 22.
    Wang, K.-H.C., Botea, A.: Tractable multi-agent path planning on grid maps. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-2009), pp. 1870–1875 (2009)Google Scholar
  23. 23.
    Čáp, M., Novák, P., Kleiner, A., Selecký, M.: Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Trans. Autom. Sci. Eng. 12(3), 835–849 (2015)CrossRefGoogle Scholar
  24. 24.
    Wang, K.-H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. (JAIR) 42, 55–90 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control” of Russian Academy of SciencesMoscowRussia
  2. 2.People’s Friendship University of Russia (RUDN University)MoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations